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Abstract

Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation
is one of the most crucial challenges for modern science, yet answers to many fundamental ques-
tions remain elusive. These include what factors commonly facilitate transmission of pathogens to
novel host species, what drives variation in immune investment among host species, and more
generally what drives global patterns of parasite diversity and distribution? Here we consider how
the perspectives and tools of macroecology, a field that investigates patterns and processes at
broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global
infectious disease ecology. In particular, emerging approaches are providing new insights about
scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and
infection risk. Ultimately, macroecology is establishing a framework to more accurately predict
global patterns of infectious disease distribution and emergence.
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INTRODUCTION

Each year infectious diseases cause 9.6 million human deaths
globally (Lozano et al. 2013) and cost about $120 billion in
the U.S. alone (US Centers for Disease Control and Preven-
tion 2008). Most of these diseases have a long history of
infecting humans, but growing population size, global connec-
tivity and habitat disruptions collectively boost the chances
that a novel infectious disease will emerge in humans (Morse
et al. 2012). At the same time, infectious diseases have caused
die-offs among terrestrial and marine biota ranging from bats
and birds to frogs and sea stars (Pedersen et al. 2007; Frick
et al. 2010; Heard et al. 2013). The problem of identifying
high-risk pathogens ranks among the greatest challenges
facing modern science; critical to this effort is the need to
predict geographic locations where disease outbreaks are
likely to occur, identify the reservoir hosts from which patho-
gens will emerge, and predict host species at greatest risk of

pathogen-mediated declines. A new perspective is needed to
develop integrative, broad-scale models that examine determi-
nants and constraints on pathogen distributions and predict
their responses to environmental change. Macroecology can
provide this perspective.
Macroecologists search for statistical relationships explain-

ing species, abundance, and trait distributions at broad scales
of organisation and from both historical and geographical
perspectives (Brown 1995). In contrast to traditional experi-
mental and mechanistic approaches in ecological disciplines
such as population and community ecology (Johnson et al.
2016), macroecological studies generally use existing data to
investigate and generate hypotheses. The emergence of
macroecology roughly 25 years ago coincided with the new
age of informatics that has fostered studies at broad spatial
and temporal scales, where localised ecological phenomena
transition into the global processes of biogeography, paleobi-
ology and evolutionary diversification (Brown 1995; Burnside
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et al. 2012; Smith et al. 2014). As a field, macroecology offers
a framework for investigating questions across diverse areas
of research. In conservation, for example, macroecological
approaches have revealed complex suites of biological and
environmental factors that drive mammal extinction risk (Car-
dillo et al. 2005; Davidson et al. 2012); thus providing a new
basis for predicting species most vulnerable to future declines.
Macroecology has provided equally important advances in cli-
mate science (e.g., Kerr et al. 2007; Algar et al. 2009), animal
behaviour (e.g., Viscido et al. 2004; Carbone et al. 2005), and
evolution (e.g., Taylor & Gotelli 1994; Clauset & Erwin 2008).
Macroecology complements the science of infectious disease

ecology by identifying broad-scale patterns of relationships
between parasites and hosts, and evaluating support for
underlying causes that apply generally across taxa and geogra-
phy. To date, however, studies of host–parasite interactions
remain on the fringes of macroecology, in part because of
data limitations (but see, e.g., Nunn et al. 2003; Guernier
et al. 2004; Jones et al. 2008; Dunn et al. 2010; Murray et al.
2015). We define parasites broadly as disease-causing organ-
isms ranging from viruses and bacteria to helminths and
arthropods, including all pathogens. Compared to free-living
organisms, taxonomic and distributional information is less
complete for parasites. Most parasitic species are still
unknown to science (Dobson et al. 2008; Poulin 2014), exist-
ing data are spatially and temporally sparse, and taxonomic
confusion or lack of resolution is common. Early attempts to
explore broad scale patterns of parasite biodiversity indicated
that the diversity of helminth species infecting vertebrates
globally greatly exceeds that of their hosts (Poulin & Morand
2000; Dobson et al. 2008) and that host species traits might
predict variation in parasite species richness (e.g., Gu�egan
et al. 1992; Feliu et al. 1997; Morand & Poulin 1998; Nunn
et al. 2003; Ezenwa et al. 2006). New global data sets on par-
asites (e.g., Nunn & Altizer 2005; Dallas 2016) coupled with
more flexible computational tools (e.g., Elith et al. 2008) offer
opportunities to expand on previous work and make new dis-
coveries.
Greater synthesis of infectious disease ecology and macroe-

cology has advantages for both disciplines. Because parasites
often have unique life history traits that affect their energetics
and distribution, incorporating parasites into macroecology
could provide new insights into scaling properties across all
living taxa (Hechinger et al. 2011; Lagrue et al. 2015).
Macroecology can benefit understanding of parasites as a
hyper-diverse component of the earth’s biota by investigating
whether parasites conform to the macroecological paradigms
discovered in free-living species (e.g., Table 1). Macroecologi-
cal data sets and approaches can also advance basic questions
in the ecology and evolution of infectious diseases, such as
how anthropogenic drivers and global environmental change
are altering parasite distributions. Typical studies of disease
biogeography focus on understanding the distributions of
individual diseases or vectors (e.g., Blackburn et al. 2007;
Simoonga et al. 2009). Macroecology contributes to this
understanding by illuminating additional principles that drive
global variation in parasite biodiversity (Fig. 1).
Here, we outline how the perspectives and tools of macroe-

cology advance our understanding of infectious disease

ecology. We first discuss common macroecological patterns in
free-living species and the extent to which parasitic species
conform to similar rules. We next turn to broad scale patterns
of host defense, and examine what macro-scale approaches
can tell us about taxonomic and geographic variation in sus-
ceptibility to infection. We also review recent computational
advances, including machine-learning approaches, that allow
researchers to use heterogeneous data sets and accommodate
imperfect sampling regimes that often characterize macroeco-
logical and broad-scale disease datasets. We go on to consider
how insights from infectious disease macroecology can inform
efforts to protect human health and conserve biodiversity.
Finally, we examine crucial needs for future work including
better prediction of disease emergence and spread and over-
coming the analytical and data challenges inherent in macro-
scale disease research.

MACROECOLOGICAL PATTERNS IN FREE-LIVING

AND PARASITIC SPECIES

Numerous studies have revealed consistent patterns of species
abundance, distribution and diversity that occur with such fre-
quency in free-living organisms that they can be thought of as
macroecological ‘rules’ (Table 1; Brown 1995; Witman & Roy
2009; Smith et al. 2014). Some of these rules concern patterns
of trait relationships among species. For example, body size
and abundance distributions are strongly right skewed for
most taxa, with a higher number of small and rare species
than large and abundant species. Other rules concern species
distribution and diversity. For example, species richness tends
to decrease with latitude, whereas the range area of species
tends to increase with latitude (Rapoport’s rule). Each pattern
or rule hints at the ecological and evolutionary forces that
shape patterns of biodiversity. Compared to studies of free-
living organisms, relatively few studies have considered analo-
gous patterns in parasites (Poulin & Morand 2004). However,
studies conducted on parasites to-date reveal intriguing simi-
larities between parasitic and free-living organisms in some
cases (Table 1). This implies that much of the theory devel-
oped to explain diversity patterns in free-living organisms
might also apply to parasites, such that insights from macroe-
cology could advance knowledge of parasite diversity (e.g.,
Fig. 1).
Biodiversity is the product of current environmental condi-

tions and biogeographic history, and differences between
regional faunas and floras often reflect differential constraints
stemming from these two factors (Mittelbach et al. 2007). Par-
asite biodiversity is known to increase with host biological
traits such as body mass, range area, longevity and population
density (Kamiya et al. 2014a) and further depends on host
evolutionary history, with host species lacking close relatives
tending to have fewer parasite species compared to species in
rapidly diversifying clades (Nunn et al. 2004; Huang et al.
2015). More recently, quantitative studies on the effects of
allometric scaling in host demographic parameters suggest
that transmission thresholds for parasite establishment, para-
site biodiversity, and the tendency for parasites to induce host
population cycles scale allometrically among host species (e.g.,
Hechinger 2013; Han et al. 2015a). Further work should
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Table 1 Macroecological rules for free-living and parasitic species. A number of important macroecological patterns have been described for free-living

organisms, and in some cases, key examples of animal parasites conforming to similar rules

Macroecological

rule Summary of trend Visual pattern Pathogen (pathogen) examples

Body size

distributions

More small-bodied species have been

described relative to large-bodied species

Right-skewed body size or genome size distributions in many

groups of helminths, arthropods, and viruses (Poulin &

Morand 1997; Claverie & Abergel 2013)

Species

abundance

distributions

More low-abundance species exist

compared to highly abundant species

Right-skewed abundance distributions of helminth species in

their fish hosts (Poulin et al. 2008)

Taylor’s power

law

Variance in abundance is a power function

of mean abundance across species

populations

Log variance scales with log mean number of pathogens per host

and the log mean number of clinical cases per outbreak for

human pathogens (Keeling & Grenfell 1999; Woolhouse 2002;

Morand & Krasnov 2008)

Abundance–
body size

relationships

Abundance generally decreases with body

mass across species within any large

taxon

Mean number of pathogens per host decreases with pathogen

body size across metazoan pathogens of vertebrates (Krasnov

et al. 2013)

Abundance–
distribution

relationships

Local abundance increases with regional

occupancy or distribution

Locally abundant pathogen species occur in more populations of

fish or invertebrates on a regional scale, than locally rare

species (Poulin et al. 2012; Thieltges et al. 2013)

Species–area
relationships

The number of species in an area is a

power function (or some similar function)

of the size of that area

The richness of pathogens and pathogens in humans and wildlife

scales with the size of the geographic area sampled (Smith et al.

2007; Dunn et al. 2010; Guilhaumon et al. 2012)

(continued)
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determine whether this represents a general scaling relation-
ship (similar to the relationship between body mass and meta-
bolic rate) or only occurs in certain taxa. In addition to
advancing understanding of parasite distributions in natural
systems, macroecological perspectives can also be applied to
illuminate infectious disease patterns in human populations.
For example, human infectious diseases exhibit a latitudinal
gradient in diversity similar to the richness of free-living
organisms (Guernier et al. 2004), which appears to be strongly
influenced by underlying vertebrate biodiversity (mammals
and birds), human population size, and disease control efforts
(Dunn et al. 2010). This pattern highlights the dual impor-
tance of ecological and socio-economic factors in determining
patterns of disease diversity.
Studying the broad-scale diversity and distribution of para-

sites also promises to advance the field of macroecology and
ecological theory in general. Owing to their obligate and inti-
mate associations with hosts, parasites often exhibit different
life histories and metabolic demands compared to free-living
organisms, which in some cases leads to scaling patterns that
differ from those of non-parasitic species. In cases where

parasites diverge from the macroecological patterns of free-liv-
ing species, knowing why and how parasites deviate can help
illuminate why a pattern holds true for other taxa. For exam-
ple, Hechinger et al. (2011) found that metabolic theory could
explain observed variation in the abundance of parasite spe-
cies in estuarine food webs only after including the dynamics
of energy flow among trophic levels. This led to discovery of
the principle of production equivalence, where species within
a given trophic level tend to produce biomass at the same rate
across all body sizes and functional groups.
Parasites also offer distinct advantages as study systems for

advancing macroecological theory. Their degree of resource
specialisation (i.e., the number of host species used and/or the
phylogenetic diversity of their hosts) can be readily quantified,
potentially with less subjectivity than free-living species (Pou-
lin & Mouillot 2003), which enables stronger tests of macroe-
cological theories. For example, by comparing the abundance
and host breadth of fleas on small mammals, Krasnov et al.
(2004) obtained clear empirical support for the resource
breadth hypothesis, which states that the same attributes that
allow some species to exploit many resources also allow them

Table 1. (continued)

Macroecological

rule Summary of trend Visual pattern Pathogen (pathogen) examples

Rapoport’s rule The geographical range size of species

generally increases towards higher

latitudes

The geographical range size of Palaearctic fleas parasitic on

mammals correlates positively with latitude (Krasnov et al.

2008)

Latitudinal

gradients in

diversity

The number of species (in comparable

habitat patches) increases towards lower

latitudes

Human and primate pathogen species richness peaks at low

latitudes (Guernier et al. 2004a; Jones et al. 2008; Kamiya et al.

2014b). Note: this pattern is overall uncommon in parasites

(Poulin 2007)

Distance decay

of similarity

Similarity in species composition decreases

exponentially with increasing distance

between sites

Similarity of helminth or arthropod assemblages decreases

exponentially with increasing distance between host populations

(Krasnov et al. 2005)

Nested species

subsets

Within a larger region, species in

depauperate assemblages are subsets of

those in richer assemblages

Human pathogens exhibit a nested species distribution, such that

higher latitude assemblages are of often subsets of tropical

assemblages (Guernier et al. 2004a). Note: this pattern is

uncommon in non-human parasites (Poulin 2007)

© 2016 John Wiley & Sons Ltd/CNRS

1162 P. R. Stephens et al. Review and Synthesis



to reach high local abundance. For further discussion of
‘rules’ in parasite ecology see Poulin (2007).

GLOBAL BIOGEOGRAPHY OF HOST DEFENSE

Macroecology offers tools to understand the otherwise per-
plexing variation in defense strategies against parasites among
host species, a significant unanswered evolutionary puzzle
(White & Perkins 2012; Graham 2013). The nature and extent
of these defenses are to a large part the product of host-para-
site co-evolution, which encompasses the constraints of his-
tory and adaptation inherent to any particular host-parasite
association. With its use of phylogenetically-based compara-
tive approaches, macroecology allows different co-evolution-
ary histories to be taken into account in investigations of
broad-scale variation in defense strategies among host taxa
(Hadfield et al. 2014). For example, macroecologists have
examined the cost of immune defenses trade-off against other
components of host life-history and discovered that short-
lived species with rapid reproductive cycles often forgo or
reduce investment in immune defense, whereas longer-lived
species with slower rates of reproduction tend to invest more
in defense (Lee 2006; Previtali et al. 2012). Moreover, host life
history strategy, combined with metabolic traits, explains sig-
nificant variation in the presence and intensity of infections
tolerated by species (Johnson et al. 2012). Notably, variation
in host defense strategies might have crucial consequences for

the global distribution of parasites and spillover risk to
human populations. For example, bats have been identified as
the source of a disproportionate number of emerging zoonotic
viruses, including SARS, Ebola, Nipah, Hendra and rabies
(Dobson 2005). Macroecological studies show that the unique-
ness of bats cannot be explained by their life history and eco-
logical traits (Luis et al. 2013), spurring new investigations of
bat immune defenses relative to other vertebrate hosts (Zhang
et al. 2013; Brook & Dobson 2015). As genetic tools increase
our ability to screen for multiple parasite infections and assess
immunity in wild hosts, the potential for macroecological
approaches to facilitate novel insights into the variation and
implications of host defense strategies will continue to grow.
In humans, macroecological studies have shown that there

is great variation in parasite occurrence among populations
(Burnside et al. 2012). In addition, different human parasite
assemblages tend to form nested subsets, with the pathogens
that occur at higher latitudes consisting of subsets of patho-
gens that occur close to the equator (Guernier et al. 2004).
Macroecological approaches allow us to investigate whether
immune defense investment and immunogenetic variation dif-
fer among human populations, as might be predicted by
heterogeneity in the diversity or composition of parasite
assemblages. The availability and quality of food resources
also vary considerably among human populations, and nutri-
tional deficiencies can lead to decreased immunity due to
trade-offs between immune response and growth rates

(a)

(b)

(c)

Figure 1 Three different views of parasite diversity in free-living primates: (a) predicted global patterns of known parasite species richness in wild primates

based on the geographic ranges and known pathogen diversity (ranging from viruses to helminths) of over 100 wild primate host species, (b) areas likely to

contain large numbers of undiscovered parasite species based on the geographic distribution of understudied primate species, and (c) areas of high zoonotic

disease risk for humans based on the geographic distribution and phylogenetic similarity to humans of wild primate species. Host-parasite diversity was

estimated based on records in the Global Mammal Parasite Database (http://www.mammalparasites.org/). See (Cooper & Nunn 2013; Pedersen & Davies

2009) for additional details on how maps were generated.
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(reviewed in Viney & Riley 2014). Comparative studies of
diet, immune response and growth rates among human popu-
lations could identify which nutritional supplements are the
most efficacious and cost effective at alleviating such trade-
offs. A macro-scale perspective could also ask how modern
changes in lifestyle interact with human immunology and the
frequency of immune system errors such as allergies (Maizels
2005). More generally, studies of macro-scale variation across
human populations could provide an important perspective
that complements existing experimental and cohort based
approaches to problems in human health.

COMPUTATIONAL APPROACHES AND DATA

CHALLENGES

The non-experimental nature of macroecological approaches
complicates the ultimate goal of inferring causal mechanisms.
One challenge of macroecological data involves statistical
non-independence, which can be phylogenetic, with some spe-
cies sharing characteristics by descent (Felsenstein 1985), or
spatial, with adjacent sampling locations having more similar
environmental conditions (Beale et al. 2010). Consequently,
methods for assessing and controlling for non-independence
are critical and under continued development (e.g., Freckleton
& Jetz 2009; Garamszegi 2014). Controlling for phylogenetic
non-independence in studies of parasites and host–parasite
interactions is complicated by the relative dearth of parasite
phylogenies of the resolution and breadth available for free-
living taxa. This highlights the need for additional resources
devoted to elucidating evolutionary relationships among para-
sites.
Another major set of challenges concerns correcting for

variation in sampling effort. For example, in comparative
studies of parasite richness better-studied host species almost
always have more parasites recorded (Gregory 1990; Walther
et al. 1995). Indeed, the best predictor of known parasite spe-
cies richness per host species or location is often the number
of studies conducted or individuals sampled (Nunn et al.
2003). Biases also exist in which host species are studied. For
example, a primate host is more likely to be sampled for para-
sites if it is large-bodied and has a wide geographic distribu-
tion (Cooper & Nunn 2013). Similarly, there appears to be a
mismatch between countries where primates are better studied
and locations likely to harbour the greatest parasite richness
(Hopkins & Nunn 2007; Cooper & Nunn 2013). Sampling
biases thus present a significant hurdle for understanding dri-
vers of parasite diversity and distributions across host taxa
(Davies & Pedersen 2008; Cooper et al. 2012; G�omez et al.
2013).
A macroecological perspective demands large data sets,

often compiled from multiple sources, with information on
many species and biogeographic variables. This need for
breadth presents unique challenges in the collection and cura-
tion of data. For instance, the Global Mammal Parasite Data-
base includes data on the biology and distribution of
mammalian parasites from more than 2400 primary literature
sources (Nunn & Altizer 2005). Effective use of such data
requires wide accessibility, cohesive data integration, and a
detailed understanding of the strengths and limitations of the

data available. Existing tools for promoting access and cross-
reference include the ecological metadata language (Fegraus
et al. 2005), Darwin Core (Wieczorek et al. 2012), the Knowl-
edge Network for Biocomplexity (Jones et al. 2001), and the
Dryad Digital Repository (Vision 2010). More sophisticated
tools are needed, especially for exploring and suggesting con-
nections that can be made among heterogeneous databases.
For example, a centralised AmazonTM (North Seattle, WA,
USA) style rating system for potentially useful datasets – cou-
pled with relational maps of existing databases – would be
invaluable to advance disease macroecology and bioinformat-
ics in general.
Recent developments in data science would also advance

disease macroecology, where data science is defined as the
integrated practices of data curation, visualisation, and analy-
sis (Kelling et al. 2009; Michener & Jones 2012). In terms of
analysis, the process of data interrogation can be conceptu-
alised as a repeating cycle (Fig. 2) involving the formation of
research questions, the acquisition of data, and the choice or

Box 1 A case study in applying data science to macroecology

Science is an iterative process. Many research problems can
be characterised as a cycle (Fig. 2) involving (a) the con-
struction of tractable research questions, (b) data acquisi-
tion, and (c) analysis and visualisation. This workflow
produces both (d) candidate solutions to the focal research
question, and (e) new hypotheses and ultimately (f) gener-
ates new questions for future work. In macroecology, the
data used in step (b) are often constructed from existing
data products and the methods used in (c) are often cus-
tom-built for the focal analysis. As one example of how
this approach has been applied to broad-scale data sets in
infectious disease ecology, Han et al. (2015b) investigated
the traits that predict whether rodent species are reservoirs
of zoonotic diseases. They followed this by collating com-
parative trait data, such as adult body size, average num-
ber of litters per year, and age to sexual maturity, across
2200 + rodent species worldwide. Next, the authors per-
formed analyses using generalised boosted regression trees
(Elith et al. 2008), an ensemble machine learning method
for fitting statistical models that can incorporate predictor
variables with non-parametric distributions and incomplete
data. Their results showed that a fast life history strategy
(short lifespan, rapid development to maturity) predicted
zoonotic reservoir status with over 90% accuracy. The
authors then developed new visualisation techniques to
depict model outcomes, identify especially high-risk reser-
voir hosts, and predict rodent species that might be likely
zoonotic disease reservoirs but have not yet been sampled
for parasites. Finally, this study identified a new question
that might be pursued in future empirical work, namely
asking whether physiological trade-offs between immunity
and reproductive output underlie the observed biogeo-
graphical and life history patterns found in the most per-
missive rodent reservoirs hosts.
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construction of analytic tools that further refine research ques-
tions (e.g., Box 1). Modern analytical tools – many of which
are derived from decades of research in machine learning and
computational statistics - range from widely used off the shelf
methods for well-defined problems (e.g., Elith et al. 2008) to
custom-built algorithms that require methodological innova-
tions. Data visualisation is also critically important. Creating
insightful representations of macroecological data, which can
be high-dimensional and exhibit complex geometry, often
requires novel approaches to visualize patterns. For example,
G�omez et al. (2013) used a network to represent how primate
hosts are connected through the parasites that they share.
Future advances in the macroecology of infectious disease will
in many cases rely on increased use of rapidly evolving com-
putational tools at multiple points along the data interroga-
tion continuum.

INSIGHTS FOR PUBLIC HEALTH AND WILDLIFE

CONSERVATION

Human-driven environmental change and globalisation of tra-
vel and trade have increased the probability of parasite spil-
lover into human and animal populations and facilitated
parasite spread at regional and global scales (Morse et al.
2012; Gottdenker et al. 2014). Some researchers have sug-
gested that the odds of an infectious disease pandemic have
never been higher (Smith & Gu�egan 2010; Daszak 2012;
Morse et al. 2012). Macroecological approaches are already
increasing our understanding of emerging infectious diseases
(EIDs). For example, based in a global database of 335
human EID events, more than 60% of human EIDs were
determined to be of animal (i.e., zoonotic) origin (Jones et al.
2008). A recent review also showed that RNA viruses that
infect a wider variety of animal hosts are much more likely to
infect and be transmitted among humans, and have a greater
potential to cause pandemics (Woolhouse et al. 2014).
The study of zoonotic EIDs highlights a pressing need to

integrate human, animal and environmental health within a

common framework, as underscored by the ‘One Health’
movement (Zinsstag et al. 2011). Macroecology informs One
Health approaches by providing crucial information on how
the elements of human and natural systems are linked. For
example, by exploring which traits make different host species
likely to share parasites (Fig. 3, Davies & Pedersen 2008;
Huang et al. 2014), and by determining which parasite traits
influence whether they are specialists or generalists (e.g.,
Agosta et al. 2010), macroecology can help identify likely ori-
gins of future zoonotic outbreaks. Pedersen & Davies (2009)
applied this approach to map areas of high zoonotic disease
risk for humans based on the geographic distribution and
phylogenetic affinity to humans of wild primate species
(Fig. 1c), assuming that areas that contain many primate spe-
cies closely related to humans are more likely sources of zoo-
noses than areas containing fewer and more distantly related
species (see also Cooper et al. 2012). They concluded that the
forests of central and western Africa represent areas where
zoonotic outbreaks are likely to occur. Similar macroecologi-
cal studies in the future could help focus on-the-ground
efforts for parasite surveillance and detection (Farrell et al.
2013).
Macroecological studies have proved critical to biodiversity

conservation by revealing the complex suite of biological and
environmental factors that threaten wildlife, thus helping to
predict which species are most vulnerable to future declines
(Cardillo et al. 2005; Davidson et al. 2012). In some cases,
infectious diseases are a primary driver of species declines, such
as chytridiomycosis in amphibians (Skerratt et al. 2007) and
white-nose syndrome in North American bats (Frick et al.
2010). Macroecological studies have also shown that being
threatened by any other factor (e.g. land-use change, invasive
species, pollution) increases the risk of a host species also being
threatened by disease, and that parasite-related problems
increase with host threat status (i.e., threatened, endangered or
critically endangered, Heard et al. 2013). Other work has
shown that wildlife species phylogenetically closely related to
domesticated animals are more likely to be threatened by para-
sites, and that parasites transmitted by close contact are more
likely to cause extinction risk than those transmitted by other
routes (Pedersen et al. 2007). Appling macroecological
approaches can provide crucial insights towards predicting the
parasite impacts on animal populations in light of environmen-
tal change and other anthropogenic forces.
Parasites themselves are also undergoing a biodiversity crisis

that mirrors the biodiversity crisis of free-living animals (Koh
et al. 2004; Dunn et al. 2009). Somewhat counterintuitively,
even though the chances that the parasites that remain nega-
tively impact host populations often increase with host threat
status (Suz�an et al. 2012; Heard et al. 2013), more threatened
species also tend to be infected by fewer parasite species over-
all (e.g., Altizer et al. 2007; Farrell et al. 2015). Loss of para-
sites may thus provide a ‘canary in the coal mine’ indicator of
increased host threat status, and of habitat degradation more
generally (Huspeni & Lafferty 2004). The consequences of the
loss of hosts and their parasites go beyond simply pruning
more biodiversity from the tree of life. Parasites are critically
important in ecosystem services, such as mediating interspeci-
fic competition (Hudson et al. 2006; Dobson et al. 2008); they

Figure 2 The process of data interrogation conceptualised as a repeating

cycle (see Box 1 for full description).
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can also promote genetic diversity in their hosts (e.g., by
favoring sexual reproduction in their hosts or altering repro-
ductive compatibility; Nunn et al. 2004; Karvonen & See-
hausen 2012), facilitate species coexistence within communities
(e.g., by frequency-dependent infection; Gilbert 2002), and
provide natural biological control of weeds and pest species
(Viterbo et al. 2007; Abdul-Ghani et al. 2012). Macroecologi-
cal perspectives have already contributed to knowledge of the
implications of parasite loss for ecosystems and individual
hosts (e.g., Torchin et al. 2003; Koh et al. 2004; Dunn et al.
2009). With new data on animal health and physiology from
comparative work, macroecological studies can help scientists
develop a clearer picture of the double-edged sword of infec-
tious disease costs and benefits, for ecosystems, biodiversity
and human health.

FURTHER DIRECTIONS FOR FUTURE WORK

One of the primary goals of infectious disease macroecology
is to help forecast future disease outbreaks or emergence, for
humans, domestic species, and wildlife. While no approach
can predict exactly where and when specific outbreaks will
occur, macroecological research can reveal circumstances in
which new parasites are most likely to emerge, and thus can
act as a valuable guide for future allocation of research funds
and monitoring efforts. Methods for modelling the distribu-
tion and transmission risk of individual parasites are fairly
well established (e.g., Blackburn et al. 2007; Simoonga et al.
2009; Alexander et al. 2012). These methods are invaluable
for predicting the dynamics and even potential future out-
breaks of parasites that are already being monitored (e.g., Fis-
cher et al. 2014), but provide little insight into where new
parasites might be expected to emerge. Comparative macroe-
cological studies can in some cases provide such insight. For
example, Cooper & Nunn (2013) generated maps of areas

likely to harbour undiscovered parasite diversity based on pri-
mate species richness and the number of studies of primate
parasites in various countries. They predicted that Central
America, along with parts of Africa and Asia, harbour the
largest numbers of undiscovered primate parasite species
(Fig. 1b); these regions could represent targets for future par-
asite surveys. Similarly, Han et al. (2015b) investigated the
traits of rodent species known to harbour zoonotic diseases.
By comparing these to the traits of rodent species not yet
sampled for infectious diseases, they identified a set of host
species and geographic locations likely to pose future risk of
rodent borne zoonotic disease. As a final example, Morse
et al. (2012) used a database of the localities of all past dis-
ease emergence events since 1940 to generate models that pre-
dicted areas of likely future disease emergence. Areas of high
disease emergence risk were identified on nearly every conti-
nent, though by far the greatest number of hotspots occurred
in southeast Asia. The application of macroecological
approaches to guide the discovery of novel parasites and
future threats is still a relatively recent development, and we
suggest that it represents a fruitful avenue of research for both
basic and applied science.
Disease macroecology is also well suited to investigating

why some parasites remain local threats while others achieve
pandemic status. For example, Zika virus, which has been
linked to macrocephaly and other neurologic disorders, is
already infecting humans in South, Central, and North Amer-
ica after being introduced in Brazil roughly a year ago (Peter-
sen et al. 2016), while Middle Eastern Respiratory Syndrome
remains largely limited to the Middle East despite more than
4 years of spread (Zumla et al. 2015). Today, many infectious
diseases appear to be a product of anthropogenic environmen-
tal changes and thus represent a hidden cost of human devel-
opment (Jones et al. 2008; Bonds et al. 2012). Changes of
particular concern include land-use change, climate change

(a) (b)

Figure 3 Studies of parasite sharing have implications for conservation biology and human health. For example (a), contact between humans and wild

mammals provides opportunities for cross species transmission both to and from humans. Macroecological studies of parasite sharing among wild

mammals can reveal what factors that make it more likely for cross species transmission to occur. For example (b), in wild carnivores host species with

moderate-to-large range overlap and high phylogenetic affinity tend to share the largest proportion of parasite species. See (Huang et al. 2014) for further

details.
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and globalisation through trade and travel (Lafferty 2009;
Smith et al. 2009; Jones et al. 2013). Climate-induced shifts in
phenology and species movements will certainly affect disease
dynamics, but it is unclear whether parasite range shifts, con-
tractions, or expansions are most likely (Altizer et al. 2013).
Many animal species are already shifting towards higher lati-
tudes or altitudes in response to climate change (Hickling
et al. 2006), and a key question is whether these shifts will
bring novel groups of hosts and parasites together. Macroeco-
logical studies could do much to clarify this issue. Niche mod-
elling and related methods can be used to predict shifts in
host or parasite geographic ranges in response to climate
change (e.g., Morin & Thuiller 2009; Elith et al. 2010), and
thus potential novel patterns of co-occurrence. Macroecologi-
cal studies of the traits that make it likely for host species to
share parasites (e.g., Cooper et al. 2012; Huang et al. 2014)
would then provide key information on which potential cli-
mate induced patterns of future sympatry would be likely to
lead to interspecific disease transmission and emergence
events. We suggest that further work wedding predictive spe-
cies range modelling with models of interspecific disease trans-
mission risk represents a pressing area for future research (see
also Peterson 2006).
Macroecology has generally been viewed as an observa-

tional discipline that can be used to investigate hypotheses
about systems that are too large to be manipulated experi-
mentally. While it has great success in providing novel insights
about diverse systems (e.g., Clauset & Erwin 2008; Algar et al.
2009; Burger et al. 2012; Burnside et al. 2012), macroecology
is sometimes criticised for its seeming lack of ability to isolate
the mechanisms that produce observed patterns (Gaston &
Blackburn 1999; McGill 2003; McGill & Nekola 2010). For
example, numerous mechanisms have been proposed to
explain species abundance distributions but there is little con-
sensus on which are most important (McGill et al. 2007). This
perceived weakness of macroecology in general would presum-
ably apply to disease macroecology as well. However, like
other observational sciences (e.g., cosmology) macroecology
can refute mechanisms that make predictions about patterns
in nature different from those observed. For example, the
once widely held idea that scaling of metabolic rates with
body size across animal species is driven by geometric scaling
of surface area and internal volume was rejected when the 2/3
scaling constant predicted by this mechanism was not
observed empirically (reveiwed in Whitfield 2006). Further, a
number of newer statistical approaches for discerning mecha-
nism are coming online that may hold particular promise for
investigating parasite diversity and distributions. For example,
state-space models that separate observation processes from
generation processes are often used to infer mechanism in
population biology (e.g., Jonsen et al. 2005; Patterson et al.
2008; Breed et al. 2009) but have not yet been applied in
macroecology. The use of instrumental variables (Angrist
et al. 1996) and greater use of tools from the statistical
sub-discipline of causal inference (Rothman & Greenland
2005; Van der Laan & Rose 2011) also hold great promise.
Some of these methods are already starting to be applied in
macroecology (e.g., Harte et al. 2008).

Finally, a major challenge facing disease macroecology is the
problem of incomplete data: very few natural systems have
been thoroughly sampled at scales relevant to macroecological
studies. This problem can be at least partially ameliorated by
applying newer statistical approaches designed to deal with
incomplete data and variation in sampling effort. For example,
to mitigate the effects of variable sampling effort, parasite-host
association lists could be analysed using network methods in
which some edges (links) have been sampled and others have
not. Markov networks and path-occupancy models can be used
to investigate species interactions and network structure in
such partially observed systems (Harris 2015; Mihaljevic et al.
2015), but so far these approaches have rarely been applied to
disease ecology. Values for other kinds of missing data (e.g.
host or parasite traits) can be imputed (Royston 2004; Little &
Rubin 2014; Swenson 2014), or estimated via surrogate splits
in classification and regression tree analyses (Feelders 1999;
Hapfelmeier et al. 2012). The pattern of which data are missing
from a database can also itself in some cases be used to
improve prediction (Murphy 2012). In conjunction with ongo-
ing efforts to collect additional primary macroecological data
on disease occurrence, applying the latest analytical tools to
effectively work within the limitations of currently available
data is critical to advancing scientific understanding of broad
scale infectious disease dynamics.
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