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Group living enhances the costs of pathogen infection by

increasing the exposure of social individuals to infectious

organisms. This hypothesis is well-supported, particularly for

pathogens transmitted by close contact. However, recent and

compelling research suggests that it is time to revisit this idea.

Here, we focus on new findings which suggest that group living

can: (i) enhance host resistance to pathogen infection, and (ii)

reduce the fitness impacts of infection. This research raises the

exciting possibility that there may be common anti-parasite

benefits of group living, in addition to well-known pathogen

costs.

Addresses
1 Odum School of Ecology, University of Georgia, Athens, GA 30602,

United States
2 Department of Infectious Diseases, College of Veterinary Medicine,

University of Georgia, Athens, GA 30602, United States

Corresponding author: Ezenwa, Vanessa O (vezenwa@uga.edu)

Current Opinion in Behavioral Sciences 2016, 12:66–72

This review comes from a themed issue on Behavioral ecology

Edited by Andrew Sih and Alex Kacelnik

For a complete overview see the Issue and the Editorial

Available online 28th September 2016

http://dx.doi.org/10.1016/j.cobeha.2016.09.006

2352-1546/# 2016 Elsevier Ltd. All rights reserved.

Introduction
Animals form groups for a number of reasons, ranging

from improved access to resources and mates to reduced

predation [1]. However, group living also comes with

diverse costs, making sociality one of the most intriguing

aspects of animal behavior. One of these costs in particu-

lar — the cost of increased pathogen transmission — has

generated considerable attention among researchers in-

terested in the links between animal behavior and infec-

tious diseases [2–5]. A considerable body of evidence now

confirms that certain pathogens (defined here as any

infectious organism that causes disease) pose a threat

to individuals living in groups [6–8]. Less frequently

discussed, however, is the notion that some aspects of

group living may confer ‘anti-parasite’ benefits that di-

rectly reduce the pathogen costs of being social. Recently,

several intriguing studies suggest that certain features of

sociality may reduce, rather than enhance, pathogen
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costs. Such benefits, when they occur, could make group

living advantageous rather than costly in terms of patho-

gen infection. At the very least, these benefits could

modify expected relationships between group living

and the costs of infection, a nuance that is integral to

how we think about the costs and benefits of group living

as they relate to infectious disease.

In this paper, we integrate recent findings from a diverse

literature to explore the idea that common anti-parasite

benefits of group living may offset pathogen-related costs.

We begin by describing a framework for classifying ways

in which the anti-parasite benefits of group living might

accrue; this framework links sociality to two main strate-

gies hosts use to defend themselves against pathogens:

resistance and tolerance. Next, we review recent studies

that provide support for enhanced pathogen resistance or

tolerance connected with social living. We end by dis-

cussing the potential implications of anti-parasite benefits

of group living for understanding social evolution and

pathogen transmission, and by highlighting important

areas for future research.

Anti-parasite benefits of group living
The pathogen-related costs of group living accumulate

for one fundamental reason — contact rates between

individuals are higher in social situations which facil-

itates pathogen transmission [3]. As a consequence,

levels of pathogen infection (e.g. prevalence, intensity,

richness) are generally expected to be higher for: (i) social

versus solitary species [9]; (ii) individuals living in larger

compared to smaller groups [10]; and (iii) individuals

within groups who engage in the most relevant or fre-

quent contacts [11,12] (Figure 1a). In practice, there are

at least three reasons why these predictions are some-

times only weakly supported [7]. First, higher sociality

might select for strategies that reduce infection risks in

social animals [13] (Figure 1b). Second, the effects of

group living on pathogens might depend on other aspects

of host behavior, physiology, life-history, or ecology

[14,15]. For example, factors such as host sex, social rank,

personality and kinship can all influence the degree to

which group living affects infection risk [e.g. 16–18]. A

third possibility is that group living animals may be more

resistant to infection as a direct consequence of sociality

itself (Figure 1c). Resistance refers to an animal’s ability

to avoid or prevent infection or to reduce the number or

growth of parasites once infected. Resistance can involve

immunological or behavioral mechanisms, and is one of

the major ways in which hosts defend themselves against
www.sciencedirect.com
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Figure 1

(c) Expanded view: parasite -related costs offset by 
anti-parasite benefits of sociality

(b) Classic view:  parasite -related costs of sociality
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(a) Animals vary on the axis from more to less social at multiple scales: (i) gregarious versus solitary species; (ii) larger versus smaller groups; and

(iii) more versus less socially-connected individuals. (b) Sociality across these scales has traditionally been predicted to increase the transmission

of pathogens, although compensatory selection for parasite defenses might fully or partially reduce these costs leading to no change or only

moderate increases in pathogen burdens in social compared to less social animals. (c) However, recent work supports the idea that resistance-

related benefits of sociality could lead to social animals harboring fewer pathogens than less social animals if these benefits fully offset socially-

mediated increases in transmission. Moreover, even when social animals do have higher pathogen burdens tolerance-related benefits of sociality

could reduce the fitness costs of these infections.
pathogens [19]. There are several plausible pathways by

which group living could enhance individual resistance,

such as by enhancing resource acquisition, facilitating

direct removal of parasites (e.g. via allogrooming), or

promoting cultural transmission of parasite defense
www.sciencedirect.com 
behaviors ([4], see Box 1). As a result, social animals

may be no more parasitized than their non-social counter-

parts. In other words, the pathogen resistance benefits of

group living could fully or partially offset the transmis-

sion costs.
Current Opinion in Behavioral Sciences 2016, 12:66–72
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Box 1 Features of group living that may enhance pathogen

resistance or tolerance.

Examples of pathways that might link group living to pathogen

resistance or tolerance using primates, a vertebrate group in which

sociality is well-studied.

Allogrooming. Grooming plays an important role in maintaining

affiliative relationships within primate groups. However, it also serves

the important function of removing external parasites (e.g. ticks,

fleas, lice). In baboons, individuals who are groomed more by others

have fewer ticks, suggesting that increased access to allogrooming

available in social groups may enhance resistance by reducing both

tick infestations and exposure to tick-borne diseases [58].

Self-medication. Accumulating evidence suggests that animals use

chemicals to prevent parasite infection or to combat parasites once

infected. For example, red colobus monkeys increase ingestion of

plant species and plant parts with known anti-helminthic activity

during periods in which they are infected with whipworms [59]. Since

foraging choices can be culturally transmitted in primates [60], social

living and larger group sizes might help promote the transmission of

knowledge about medicinal plants providing a resistance benefit to

group living.

Thermoregulation. Improved thermoregulation has been proposed

as a benefit of group living in several species. As one example, vervet

monkeys, with more social partners maintain more stable body

temperatures in cold conditions because huddling reduces individual

energy expenditure [61]. Animal thermoregulatory behavior often

varies with pathogen infection status, in part because individuals

might adjust their body temperature to better cope with infection

(e.g. fever [21,62]). If group living improves an individual’s capacity to

regulate or adjust body temperature this may provide pathogen

tolerance benefits.
In many situations, though, the positive relationships

between parasite infection and group living are in accor-

dance with the traditional expectation, and social animals

do have more parasites [7,8]. However, the fact that social

individuals have more parasites may not necessarily

translate into greater fitness impacts of these parasites.

This is because hosts have at least one other strategy

available to them for pathogen defense: tolerance.

Whereas resistance acts by minimizing the level of in-

fection, tolerance acts by reducing the damage inflicted

by pathogens rather than their numbers [20,21]. If group

living animals are more tolerant to infection, then social-

ity might confer an advantage where social animals

mitigate pathogen-induced damage, and its fitness con-

sequences, more effectively (Figure 1c). In this case,

pathogen tolerance benefits of group living could directly

offset the costs of higher parasitism in groups. Although

the mechanisms of tolerance are only beginning to be

studied in animals, a diverse range of immunological and

physiological processes are likely involved [22–24]. No-

tably, a number of these processes might be affected by

sociality in direct or indirect ways (see Box 1). Given

increasing evidence of pathogens having profound

impacts on the ecology, evolution and behavior of their

hosts [25–27], in high risk environments where infection

is inevitable, it is worthwhile to consider whether patho-

gen resistance and tolerance-related benefits of group
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living might be sufficiently advantageous to favor the

evolution of sociality.

Resistance benefits of group living
Resistance is often viewed as a property of an individual,

related to genotype or level of investment in immunolog-

ical and behavioral traits associated with pathogen de-

fense. However, the concept of ‘social immunity’ expands

this view, referring to collective defenses some organisms

use to protect themselves and conspecifics against para-

sites [28]. One of the outstanding questions about social

immunity is whether these defenses evolved in response

to the pathogen pressures of group living, or whether they

instead facilitated the evolution of group living by mod-

erating pathogen costs. A recent study evaluated whether

social immunity is a by-product or driver of sociality in

insects by compiling evidence on defense mechanisms

reported across different insect social systems [29�]. The

work showed that nearly half of the types of collective

defenses seen in eusocial insects also occur in social and

solitary insects, providing preliminary evidence that so-

cial immunity may have been a prerequisite for the

evolution of complex social systems in insects [29�]. In

terms of the resistance benefits of sociality, one form of

social immunity that is particularly relevant is social

immunization, where close contact between pathogen-

exposed and naı̈ve group members enhances resistance

among naı̈ve individuals [30]. A compelling example of

social immunization comes from experiments with the

ant, Lasius neglectus, and the common fungal pathogen,

Metarhizium anisopliae, which showed that social contact

between pathogen-exposed and unexposed nest mates

caused low-level infections in unexposed individuals,

ultimately leading to upregulation of anti-fungal defenses

and an enhanced ability to inhibit fungal growth [31]

(Figure 2). This mechanism of low dose ‘protective’

exposure to pathogens through social contact could po-

tentially apply in a number of situations.

Facilitating inoculation with low doses of pathogen is not

the only way that group living might enhance pathogen

resistance. Many non-pathogenic microbes that make up

the host microbiome are also transmitted by close contact

among group members. Mounting evidence suggests that

the diversity and composition of a host’s microbiota can

affect resistance to pathogens. In the mammalian gut, for

example, commensal microbes can contribute to patho-

gen resistance by outcompeting pathogens for resources,

producing by-products that directly inhibit pathogens,

and by stimulating host immunity [13,32]. Therefore, if

social contact promotes the exchange of commensal

microbes and the maintenance of a more diverse micro-

biome, it is plausible that microbially-mediated pathogen

resistance might be an underappreciated benefit of living

in groups [33,34]. A study on bumblebees provides strong

support for this hypothesis, demonstrating first that

close social contacts among nest mates facilitate the
www.sciencedirect.com
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Figure 2
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In the ant, Lasius neglectus (a), social contact between naı̈ve

individuals and those exposed to the fungus Metarhizium anisopliae (b)

causes low-dose infections in naı̈ve ants that confer pathogen

resistance. Social contact between bumblebees (c) facilitates the

transmission of commensal gut microbes that confer protection

against the parasite Crithidia bombi (d). Group living in wolves (e)

improves the survival of individuals infected with mange, Sarcoptes

scabei (f). Images are from Wikimedia Commons.
establishment of the normal gut microbiome in newly

pupated bees, and second, that a normal gut microbiome

is essential in defense against a virulent parasite, Crithidia
bombi [35] (Figure 2). More recent studies on both bum-

blebees and honeybees confirm that social contacts be-

tween nest mates are crucial for development of a normal

gut microbiota [36,37]. The importance of social trans-

mission for structuring the gut microbiome is also sup-

ported by recent studies of wild vertebrates. For example,

a longitudinal study of a group of wild chimpanzees found

that the amount of time individuals spent together was a

key predictor of both the similarity between individuals’

gut microbial communities and the richness of their
www.sciencedirect.com 
individual microbiomes [38��]. Although not quantified,

the authors suggest that these microbial patterns likely

reflect increased direct or indirect (e.g. via feces) contacts

occurring between individuals who spend time together.

Of course, evidence that group living confers benefits to

individuals via microbially-mediated pathogen resistance

requires demonstrating both social transmission of

microbes and microbially-mediated resistance. Few stud-

ies aside from Koch and Schmid-Hempel [35] have been

able to link these two lines of evidence, but a growing

number of studies supporting social transmission of com-

mensal microbes [38��,39–41] and microbially-mediated

pathogen resistance [42–44] highlights the need for more

work focused on testing the potential linkages between

the two.

Tolerance benefits of group living
Pathogen tolerance involves any mechanism that can

reduce the health or fitness impacts of pathogen infec-

tion. As such, there are a variety of ways in which group

living could enhance tolerance. For example, tolerance-

related benefits of group living may arise from social

interactions that improve individual physical condition

through improved resource acquisition or increased so-

cial support [4]. These by-products of group living could

enhance an individual’s ability to mitigate the impact of

a given infection. In a fascinating example of this, [45��]
showed that wolves in Yellowstone National Park ben-

efit enormously from group living when it comes to

surviving sarcoptic mange (Sarcoptes scabei) infection

(Figure 2). Using data on pack size, infection status,

and individual survival collected over eight years, the

study showed that mange infection significantly in-

creased mortality risk for solitary wolves, however, this

elevated risk declined sharply with increases in pack

size. In fact, an infected individual could almost

completely offset the added mortality risk of mange

infection by having five pack mates [45��], suggesting

that sociality strongly mediates the fitness consequences

of mange in wolves. Increasing pack size also reduced

mortality risk for uninfected individuals, although the

survival benefit for infected wolves was substantially

greater [45��]. This discrepancy between infected and

uninfected wolves suggests that for infected individuals

there is added value to being in a group. The authors

posit that this effect might be driven, in part, by im-

proved hunting success in larger groups. Their own work

linked park-wide food availability (measured as elk-to-

wolf ratios) to improved odds of surviving infection

thereby implicating resources as an important factor

shaping the fitness costs of mange. Intriguingly, the

tolerance benefit of group living for infected wolves

appeared to level off at a pack size of 8–10 animals

[45��], which is suspiciously close to the pack size (9–13)

at which the success of capturing difficult prey levels off

in Yellowstone wolves [46]. More generally, increased

access to food is a major benefit of group living in many
Current Opinion in Behavioral Sciences 2016, 12:66–72
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species. For example, social animals can benefit from

information about food sources [47], by participating in

cooperative hunting [46], or by simply having more time

to forage [48]. Since resource availability has also been

linked to pathogen tolerance in other systems [e.g.

49,50], social effects on pathogen tolerance arising from

differences in resource acquisition may be common.

Another way that group living might confer tolerance is

through commensal microbes. As previously described,

social transmission can be an important way hosts obtain

their normal microbiota [35,36,38��]. Importantly, com-

mensal microbes not only enhance pathogen resistance

[32], but also pathogen tolerance. This was recently

shown in a mouse model, where a specific member of

the gut microbiota, Escherichia coli O21:H was shown to

prevent muscle wasting associated with Salmonella sero-

type Typhimurium and Burkholderia thailandensis infec-

tion [51�]. Interestingly, the study showed that E. coli did

not alter wasting via changes in host metabolism or caloric

uptake, but rather by promoting signaling pathways in

skeletal muscle that were directly involved in the pre-

vention of wasting [51�], revealing the diverse ways by

which pathogen tolerance can occur. Importantly, social

transmission of E. coli strains has been documented in

wild mammals. For example, [52�] used a network ap-

proach to explore the relative importance of social versus

environmental factors in explaining the transmission of E.
coli among wild giraffe. The study found that social

interactions played a much stronger role than environ-

ment in shaping patterns of microbe transmission. Simi-

larly, in brushtail possums, direct contact between

individuals was a better predictor of E. coli strain sharing

than was spatial proximity [11]. These findings raise the

possibility that the exchange of common commensal

microbes among group members may be essential for

promoting pathogen tolerance. However, future work is

needed to directly test the hypothesis that social trans-

mission of commensal microbes influences pathogen tol-

erance in group living animals. Ultimately, what is most

intriguing about tolerance benefits of group living is that

animals living in larger groups may have higher pathogen

burdens than those living in smaller groups on one hand,

yet still experience lower fitness costs of infection. This

means that in many situations simply quantifying asym-

metries in infection status that are due to variation in

social behavior may be insufficient to fully understand

how group living translates into pathogen-related fitness

costs.

Concluding remarks
In understanding the pathogen-related costs of group

living it is clear that pathogen context matters — while

contact-transmitted pathogens can spread faster in larger

groups, mobile parasites typically do not [6,8]. Likewise,

any anti-parasite benefits of group living likely depend on

pathogen context. Social immunization, for instance,
Current Opinion in Behavioral Sciences 2016, 12:66–72 
might only be a viable benefit of social contact if low-

level transmission of the focal pathogen is associated with

limited morbidity or mortality risk, as is the case for the

entomopathogenic fungus, Metarhizium anisopliae [31]. In

the case of socially-mediated tolerance, group living

individuals might only derive an advantage if pathogen

prevalence is relatively high and infection is chronic.

Under these conditions most individuals face a high

probability of being infected for a potentially significant

portion of their lives, so behaviors that reduced the fitness

impact of these pathogens might be under strong selec-

tion. Pathogens like chronic and common intestinal worm

infections harbored by most vertebrates, and Sarcoptes
scabei in wolves [45��] may fit this profile. Potentially,

animals may face conflicting pressures where group living

imposes costs related to some pathogens and benefits

related to others. Indeed, seminal work on the effects of

contact-transmitted versus mobile parasites in shaping

group size in animals [53,54] has shown that grouping

might simultaneously confer parasite costs and benefits,

with both ultimately influencing optimal group size.

These classic studies, coupled with new insights about

the role of infectious diseases in natural populations,

suggest that conflicting pressures of parasitism may play

an as yet underappreciated role in the evolution of soci-

ality.

Finally, the way in which anti-parasite benefits accrue

may have profound effects on pathogen dynamics with

further implications for host social behavior. Animal

biologists have only recently turned significant attention

to studying pathogen tolerance empirically in natural

populations [20,22,55]. However, theory predicts that

resistance and tolerance strategies should have very

different outcomes for pathogen epidemiology. Resis-

tance, because it reduces parasite fitness should de-

crease parasite prevalence at the population level,

whereas tolerance, because it does not reduce parasite

fitness, can actually increase population-level preva-

lence [56,57]. In situations where the anti-parasite ben-

efits of group living improve tolerance rather than

resistance, enhanced transmission of pathogens in

groups coupled with a longer duration of infectiousness

of infected individuals (e.g. via reduced pathogen-in-

duced mortality as in the case of wolves and scabies)

could serve to drastically increase pathogen transmission

and prevalence. Intriguingly, under such circumstances,

higher pathogen prevalence could reinforce selection for

group living, if social individuals maintain higher fitness

in the face of infection. Of course, specific outcomes will

depend strongly on the shape of the relationship be-

tween tolerance benefits and group size. More generally,

given emerging research in animal behavior, infectious

disease ecology, microbial ecology, immunology and

other fields, the time is ripe to revisit questions about

group living and pathogen infection from a new per-

spective.
www.sciencedirect.com
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62. Sköld-Chiriac S, Nord A, Tobler M, Nilsson J-Å, Hasselquist D:
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