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Integrating biological processes across scales remains a central challenge in

disease ecology. Genetic variation drives differences in host immune

responses, which, along with environmental factors, generates temporal

and spatial infection patterns in natural populations that epidemiologists

seek to predict and control. However, genetics and immunology are

typically studied in model systems, whereas population-level patterns of

infection status and susceptibility are uniquely observable in nature. Despite

obvious causal connections, organizational scales from genes to host

outcomes to population patterns are rarely linked explicitly. Here we ident-

ify two loci near genes involved in macrophage (phagocyte) activation and

pathogen degradation that additively increase risk of bovine tuberculosis

infection by up to ninefold in wild African buffalo. Furthermore, we observe

genotype-specific variation in IL-12 production indicative of variation in

macrophage activation. Here, we provide measurable differences in infection

resistance at multiple scales by characterizing the genetic and inflammatory

variation driving patterns of infection in a wild mammal.
1. Background
To predict and control the spread of infections in host populations, we must

characterize how different hosts contribute to transmission. Heterogeneity in

infection risk and morbidity is present across many disease systems, driving

patterns in population-level disease dynamics. For example, tolerant (i.e. indi-

viduals able to limit damage at high parasite burdens [1]) though highly

susceptible ‘superspreaders’ create heterogeneity in infection incidence and

exposure risk, driving patterns in infection dynamics at the population level

in multiple disease systems [2]. In less extreme cases, cryptic genetic variation

for infection resistance (i.e. a host’s ability to prevent or delay infection) still

drives patterns in prevalence and risk that otherwise remain unexplained,

especially in natural populations [3,4]. To improve outcomes for individual

hosts, we must determine the immunologic and genetic mechanisms

underlying variation in infection risk and morbidity. As such, linking scales

of organization—from genes to cells to individual hosts to populations and

metapopulations—is a central challenge in understanding infectious disease

processes.

Bridging the divide between laboratory-based approaches in genetics and

immunology and investigations of infection dynamics in natural populations
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has been identified as a priority in recent work [5–8]. None-

theless, multiscale studies that explicitly link genetic and

immunological mechanisms to variation in infection in natu-

ral populations are exceedingly rare (however, see work in

rodents [9–12]). Consequently, even for important and

well-studied infectious diseases, the extent to which immuno-

logic and genetic mechanisms cause relevant variation in

disease transmission in outbred host populations experien-

cing the full range of natural environmental variability is

usually unknown. Yet interactions among hosts and their

parasites can be strong drivers of evolution, and natural vari-

ation in immune response is expected to be a frequent target

of selection [13–15], and have direct implications for the

host’s fitness and disease transmission [16–18]. Understand-

ing the genetic and immunological basis for these host

defence mechanisms is paramount to disentangling complex

coevolutionary dynamics between hosts and their parasites.

Members of the Mycobacterium genus are well represented

in the list of major challenges to human, livestock and wild-

life health [19]. A quarter of the world’s human population

is plagued with a mycobacterial infection, with 10 million

new cases annually [20,21]. Mycobacterium bovis, the causative

agent of bovine tuberculosis (bTB), is a broad host range zoo-

notic pathogen capable of infecting most mammals. Though

human tuberculosis cases were historically solely attributed

to Mycobacterium tuberculosis infections, roughly 3% of cases

now arise from M. bovis infections worldwide (though this

is probably still an underestimate due to imprecision of cur-

rent diagnostic methods [21,22]). Mycobacterium bovis
infections in livestock also represent a substantial economic

burden in most endemic countries, where test-cull control

practices or animal morbidity and mortality lead to rampant

agricultural losses [21]. Furthermore, M. bovis infections in

wildlife have been reported in many countries with docu-

mented spillover events from and into livestock, and prove

to be almost impossible to eradicate from free-ranging

maintenance host populations [23–25].

High worldwide disease burden has made tuberculosis a

main focus of biomedical research over the last 50 years.

Extensive laboratory and clinical studies characterize

immune interactions at the cellular level between invading

mycobacteria and their hosts. Though innate recognition

mechanisms of the host are based on highly conserved

pathogen-associated proteins (which are often integral to

pathogen survival), multiple species in the Mycobacterium
genus have evolved complex mechanisms to avoid detection

[26–28]. Initially, mycobacterial pathogens are identified by

macrophages (a type of phagocyte) and phagocytized

(engulfed). Recognition should result in macrophage activation

and production of pro-inflammatory cytokines or apoptosis in

an effort to control spread, but mycobacteria often interfere

with activation of host immune cells [29] and disrupt down-

stream processes of immune containment [30–32]. Thus,

mycobacterial infection often manifests as a reduction in pha-

gocyte activation and resulting pro-inflammatory cytokine

signalling, specifically interleukin-12 (IL-12) expression [33,34].

The capacity of Mycobacterium species to evade host

immune recognition or degradation makes them highly effec-

tive pathogens. However, variation in host resistance has not

been described outside of laboratory animals and clinical

work in humans. Furthermore, though immune evasion is

common across the Mycobacterium genus, underlying physio-

logical and genetic mechanisms maintaining variation in
mycobacterial infection resistance in natural populations

have not been described, and the implications of such

variation for transmission dynamics are unknown.

Here, we examine the genetic basis for M. bovis resistance

in African buffalo (Syncerus caffer) and relate genotypic

variation at candidate resistance loci to variation in cytokine

production and infection risk in a natural mammalian host

population. African buffalo serve as a maintenance host for

M. bovis in the savannah ecosystem, sustaining relatively

high levels of infection in some areas (up to 27%) and

acting as a source of infection for other wildlife and livestock

bordering wildlife areas [24,35,36]. Previous work in this dis-

ease system has identified multiple distinct forms of host

resistance and provides weak evidence that infection resist-

ance may be heritable [37]. Though African buffalo herds

can sustain high bTB prevalence, infection resistance in this

system operates on a continuum, with some animals suc-

cumbing to infection early in life (from 2 to 6 years old)

but surviving longer once infected, and more resistant ani-

mals preventing infection until later in life, but dying

shortly after infection (up to 14 years old [37]). Furthermore,

incidence (rate of new infections) is stable across age groups

after 4 years of age [37]. These age-dependent infection pat-

terns result in high variation in resistance at the individual

level, but relatively stable infection dynamics at the popu-

lation level. Furthermore, M. bovis has been shown in

previous studies to alter infection patterns of co-infecting

pathogens [38,39] and dramatically impact host fitness in

African buffalo [37,40], making M. bovis a strong potential

driver of evolution in this system. Therefore, African buffalo

serve as an ideal wild model system in which to investigate

the genetic and mechanistic basis for M. bovis infection resist-

ance within a natural setting, shedding light on tuberculosis

infection dynamics outside the laboratory.
2. Methods
(a) Study area and field data collection
Two hundred sub-adult and young adult female African buffalo

(initial ages 2–7 years) were captured every six months in the

southern part of Kruger National Park, South Africa between

June 2008 and August 2012 as part of an experiment evaluating

the consequences of anthelminthic treatment for bTB trans-

mission (for more detail, see Ezenwa & Jolles [41]). Buffalo

were sampled from two distinct herds occurring in the

Crocodile Bridge and Lower Sabie areas of the park (35 km

apart). Estimated herd sizes during the study period for

Crocodile Bridge and Lower Sabie were 2100 and 1100 buffalo,

respectively.

Each buffalo was fitted with either a radio (n ¼ 193) or satel-

lite (n ¼ 7) collar with a high-frequency VHF transmitter upon

first capture, that was then used to locate the animal for sub-

sequent captures at roughly six-month intervals. Individuals

lost to death or emigration during the study period were replaced

to maintain a constant sample size of 200 animals spread

equally across the two herds. Of these animals, half (n ¼ 50 per

herd, n ¼ 100 total) were randomly chosen to receive an anthel-

minthic bolus (slow-release fenbendazole; Panacur, Hoechst

Roussel) as part of the study design outlined in Ezenwa &

Jolles [41]. Animal age was determined in young animals by

tooth emergence and in older animals by wear pattern [42].

At each capture, animals were immobilized by dart from a

helicopter or truck using etorphine hydrochloride (M99,

Captivon, Karino, South Africa). Following data collection,
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immobilization was reversed using diprenorphine (M5050) or

naltrexone (40 mg ml21, Kyron). Animals were observed until

fully recovered and all immobilizations were conducted by a

veterinarian according to the South African National Parks Stan-

dard Operating Procedures for the Capture, Transportation, and

Maintenance in Holding Facilities of Wildlife. All animal work

for this study was approved by the Institutional Animal Care

and Use Committee (IACUC) at both Oregon State University

(ACUP #3267) and the University of Georgia (UGA No.

A201010190-A1), which follow the 8th edition of the Guide for
the Care and Use of Laboratory Animals [43], the Guide for the
Care and Use of Agricultural Animals in Research and Teaching
[44], and the European Convention for the Protection of Ver-

tebrate Animals Used for Experimental and Other Scientific

Purposes [45].

To more accurately assess longitudinal patterns in infection

and immune function, we excluded animals with fewer than

four capture timepoints.

(b) Bovine tuberculosis testing and cytokine
stimulations

All blood samples for disease diagnostics and cytokine

stimulations were collected from the jugular vein within 15 min

of sedation and stored in heparinized tubes on ice until proces-

sing that day. bTB infection was determined with the

commercially available whole-blood gamma interferon (IFNg)

assay (BOVIGAM, Prionics, Switzerland). This assay measures

the difference in IFNg production of whole blood in response

to incubation with bovine versus avian tuberculin antigens,

while controlling for background IFNg levels [46]. Individual

samples were called as bTB-positive or -negative based on absor-

bance thresholds optimized for African buffalo [47]. We obtained

a time series of 2–9 bTB tests for each animal across 10 total poss-

ible captures and used the full time series to more confidently

assign bTB status [41]. Animals with at least two consecutively

positive bTB tests were assigned as bTB-positive. We excluded

animals with alternating bTB test results, as they could not be

confidently phenotyped. Since bTB is chronic in buffalo, and

there is no evidence of recovery, we assumed animals remain

bTB-positive until death [48]. Prevalence of bTB in this sample

was 0.142 at the beginning of the study (95% CI (0.090, 0.193)).

At each capture, we assessed host immune function by

measuring production of the cytokines interferon gamma

(IFNg), interleukin 12 (IL-12) and interleukin 4 (IL-4). Across

mammals, increased levels of IFNg would be consistent with a

T-helper 1 (TH1)-dominated adaptive immune response targeting

intracellular pathogens (e.g. viruses and some bacteria), while

increased production of IL-4 is commonly associated with a

T-helper 2 (TH2) dominated immune response against extracellu-

lar pathogens (e.g. helminths [49]). IL-12 production correlates

with innate phagocyte activation during an initial, non-specific

immune response [49,50] and also plays a critical role in coordi-

nating a successful adaptive T-cell response [51]. Additionally,

IFNg and IL-12 have been identified as key cytokines involved

in an effective immune response to tuberculosis infection [33,52].

We used cytokine-specific enzyme-linked immunosorbent

assays (ELISAs; Abd Serotec) to quantify levels of each

cytokine (IFNg, IL-12 and IL-4) following stimulation with

pokeweed mitogen (Phytolacca americana; Sigma). Pokeweed is

an established mitogen that elicits both B- and T-cell-dependent

immune responses in peripheral blood samples in vitro, allowing

the assessment of the reactive potential of whole blood immune

cells to a novel antigen by measuring cytokine production

[53–55]. Detailed cytokine quantification methods for this herd

have been previously described (IFNg [41], IL-12 [56] and IL-4

[57]). Briefly, 1.5 ml aliquots of whole blood from each animal

were incubated with 0.3 mg ml21 of pokeweed for 24 h at 378C,
after which samples were centrifuged, and the plasma super-

natant was removed and stored at 2208C until ELISA testing

in duplicate. OD-based quantification methods were used to esti-

mate stimulation-associated levels of cytokine production as a

proxy of general immune reactivity to a novel stimulus. We

obtained a time series of six consecutive measures of IL-12 and

10 consecutive measures of IFNg and IL-4, which were more

intensely sampled based on the priorities of the original

study [41]. Animals with less than four samples for IL-12 and

less than eight samples for IFNg and IL-4 were not included in

the cytokine analyses. Missing cytokine measures were due to

low blood volume collected at capture, or high discrepancy

between ELISA replicates.

(c) SNP genotyping and filtering
We used single-nucleotide polymorphism (SNP)-based molecu-

lar methods to identify variable regions of the African buffalo

genome for population structure analysis and genome-wide

association study (GWAS). We extracted DNA from dried ear

tissue samples and prepared individual DNA libraries for

sequencing using type IIB restriction-site-associated DNA

(2bRAD) methods, detailed in Wang et al. [58]. SNP identifi-

cation, mapping and general quality filtering methods for these

data have been previously described [37]. For the GWAS ana-

lyses, animals that were genotyped at 5000 or fewer loci were

removed from the dataset (n ¼ 4). We retained SNP markers

that had at least 10� coverage and were genotyped in 90% of

individuals. Markers were discarded if they had more than

two alleles, violated Hardy Weinberg equilibrium ( p , 0.0001)

or had a minor allele frequency less than 0.05.

To assess independence of each marker, we quantified link-

age disequilibrium (LD) among all pairwise combinations of

SNPs using r2 and removed markers in high LD. Of the SNPs

tested, 15 pairs were in significant LD (r2 . 0.5), 13 of which

were within 100 kb on the same scaffold. We removed the four

SNPs in high LD that were not physically linked, since these

markers are non-independent. Ultimately, filtering yielded 187

usable buffalo samples genotyped at 1480 SNPs.

(d) Statistics: genome-wide association study
Here, we evaluated bTB infection resistance in African buffalo as

variation in time to onset of infection (i.e. conversion age). Since

per capita incidence was previously shown to be equal among

herds [41] and there is weak evidence for marginally heritable

variation in infection resistance in this group of buffalo [37],

we assume some underlying physiological mechanism with a

genetic basis is causing variation in resistance in this system.

One would expect stochastic variation in time to infection due

to variation in exposure, but on average, more resistant animals

should become bTB-positive later in life.

We used right-censored Cox proportional hazards regression

models to identify SNPs associating with variation in age at

onset of bTB, and therefore variation in infection resistance.

Buffalo that converted during the study or never converted to

bTB-positive were included in the analysis (n ¼ 160), while ani-

mals that were bTB-positive at first capture were excluded

since their exact conversion age could not be determined. We

tested associations of each SNP genotype and allele separately

using the R package survival [59]. SNP models for time to

onset of bTB conversion (conversion age) included genotype or

allele as categorical main effects, as well as anthelminthic treat-

ment, herd and initial age as covariates. Anthelminthic

treatment was previously demonstrated to impact survival

following bTB infection in a subset of this population [41]. Pre-

vious work has also demonstrated the two herds described

here are not genetically distinct [37,60]. We therefore include

the covariate ‘herd’ to account for large-scale environmental
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variation and not any underlying genetic differences. Finally,

initial age was included to account for differences in observation

period during the life of the animal (age at first capture ranged

from 2 to 7 years). To control for genetic substructure in our

sample, we performed a principle component analysis (PCA)

using SNP markers in the R package adegenet [61] and included

the first five axes of this relatedness PCA as fixed effects in our

models (as most animals were only distantly related, these

components explained 10% of total genetic variation [62]). Colli-

nearity among fixed effects was assessed by calculating variance

inflation factors (VIFs) in the R package rms [63], however, no

instances of collinearity were identified (all VIFs were , 10).

SNP p-values from each model were false discovery rate (FDR)

corrected using the Benjamini–Hochberg procedure to generate

adjusted q-values based on the original p-value distribution

[64]. SNPs with adjusted q-values less than 0.05 were considered

to significantly associate with conversion age. To test for additive

or interactive effects of multiple significant SNPs within a multi-

locus genotype, we then included genotype at each significantly

associating locus in a single Cox regression model. We then used

step-wise Akaike information criterion-based model selection

[65] from the initial full multi-locus Cox regression model

which included the first five PCA axes, anthelminthic treatment,

herd, year of first capture and initial age as covariates.

We calculated mean linkage block size to determine an

appropriate window around each SNP within which to search

for putative candidate genes. We calculated r2-values for all

physically linked pairwise SNPs that occurred within 100 kb on

the same scaffold, then determined the mean distance at which

r2 was greater than 0.9, and therefore reflected the average link-

age block size for markers in high LD. We then used this linkage

block as a sliding window for candidate gene discovery near

significantly associating SNPs. We identified putative bTB

resistance candidate genes using the S. caffer genome annotation

[66]. Any large areas without annotation adjacent to SNPs of

interest were further interrogated using InterProScan, which

combines multiple methods of protein signature recognition to

identify putative full and partial protein coding regions [67,68].

Putative protein regions identified by InterProScan with an

associated e-value less than e250 were considered to have

sufficiently high assignment confidence.

(e) Statistics: inflammatory phenotypes
Here, we define variation in ‘inflammatory phenotype’ as any

measurable difference in cytokine production among individuals

indicative of variation in innate or adaptive immune activation.

IFNg and IL-12 are important signalling cytokines during the

TH1 and phagocyte response to invading Mycobacterium spp.,

respectively [33], while IL-4 indicates a TH2-dominated adaptive

response more characteristic of a macroparasite infection [49]. We

compared SNP genotype at loci significantly associating with

conversion age after FDR correction to IFNg, IL-4 and IL-12 pro-

duction over time to determine if variation in immune reactivity

associates with bTB infection resistance genotype. Mixed-effects
models were run in nlme [69]. Initial full models for each cytokine

included animal age in years, herd, anthelminthic treatment,

SNP genotype at each significant SNP, bTB status, season, year,

the interaction of each SNP with bTB status and the interaction

of season with year and animal ID as a random effect. The inter-

action of bTB status and SNP genotype was initially included in

each model as cytokine phenotype may vary with infection.

Interactions of season and year were included to allow for

inter-annual variation and seasonal patterns in this highly

dynamic ecosystem. To control for variation in cytokine level

due to variation in plasma storage time and ELISA plate effects,

we included plate as a random effect in each corresponding

mixed-effects model. Additionally, to control for differences in

cytokine measurement number, individual animals were

weighted by total number of captures in each model to control

for differences in observation period. No instances of collinearity

were identified among fixed effects (all VIFs were less than 10).

If SNP genotype is indicative of variation in phagocytic

response, we would expect that IL-12 production would differ

among SNP genotypes since activated phagocytes release IL-12

[70]. By contrast, we would expect no difference in IFNg or IL-4

production among genotypes, since these cytokines are a proxy

for TH1 and TH2 immune function, respectively, and can be

produced independently of phagocyte activation [71].

When applicable, normality was assessed using data visu-

alization and Shapiro–Wilk tests. Cytokines were natural log

transformed to meet assumptions of normality. All cytokine

model selection was done using the Akaike information

criterion [65], conditional R2, and residual plot visualization

to test for homoscedasticity [72]. All statistics were run in

R version 3.2.4 [73].
3. Results
(a) Genome-wide association
Observed and expected heterozygosity for each of the 1480

SNPs ranged from 0.0604 to 0.5839 (median 0.2177) and

0.0950 to 0.500 (median 0.2188), respectively. Principal com-

ponents analysis (PCA) revealed no obvious clustering

among individuals of each herd that would be indicative of

distinct genetic groupings, though some low-level genetic

substructure is present (electronic supplementary material,

figure S1).

GWAS yielded support for strong associations between

age at onset of bTB and genotypic variation at two SNPs

on two separate scaffolds (figure 1). These two SNPs

remained highly significant (q , 0.05) after FDR correction

in models with genotype as a main effect, after controlling

for background genetic structure (table 1, figure 1). We

found the rare allele at each of these loci conferred an addi-

tive 5.386 (SNP2253; 95% CI (2.5878, 11.2117)) and 4.084

(SNP3195; 95% CI (2.1823, 7.6436))-fold increase in risk of
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Table 1. Cox proportional hazards regression model for time to onset of bTB infection including SNP genotype at the two significantly associated SNPs.

model estimate (s.e.)a z-value p-value

time to onset of bTB

PC1 0.990 (0.032) 20.319 0.7500

PC2 1.001 (0.025) 0.056 0.9556

PC3 0.988 (0.032) 20.366 0.7143

PC4 1.008 (0.036) 0.235 0.8142

PC5 1.083 (0.037) 2.128 0.0333

herd (Lower Sabie) 1.579 (0.316) 1.444 0.1489

initial age (years) 0.557 (0.140) 24.183 ,0.0001

SNP2253 genotype (G_) 5.386 (0.374) 4.502 ,0.0001

SNP3195 genotype (T_) 4.084 (0.320) 4.400 ,0.0001

n ¼ 138; events ¼ 50 R2¼0.371
aAll estimates are back-transformed and represent a multiplicative increase in risk of bTB conversion.

Table 2. Genotype frequencies at each SNP significantly associated with
time to onset of bTB infection.

locus genotype frequency (n)

SNP2253 CC 0.810 (119)

CG 0.184 (27)

GG 0.006 (1)

SNP3195 CC 0.735 (111)

CT 0.245 (37)

TT 0.020 (3)
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converting to bTB-positive in this population of buffalo, and

no interactive effects were detected in the multi-locus

genotype Cox regression (table 1, figure 2). Genotypic

frequencies for each significantly associating locus are

reported in table 2. Due to low frequency of the risk allele

at both loci and a small number of risk allele homozygotes

at each locus, we present only the allele model (the genotype

model estimated similar conversion risks for heterozygotes

and risk allele homozygotes at these loci). These loci were

not in LD, thus associations of variation at these loci with

bTB conversion risk are likely driven by independent

underlying physiological or genetic mechanisms.

We determined the average linkage block size for markers

in high LD (r2 � 0.9) to be 29 kb and therefore used this

distance to guide our search for genes near each SNP that

are potentially involved in underlying infection resistance

mechanisms. Within 29 kb of SNP2253, we found one gene:

peroxisomal membrane protein PEX14 (18 kb downstream).
We failed to identify any genes within 29 kb of SNP3195

using the S. caffer genome annotation and only identified

small coding region fragments (less than 50 bp) using

InterProScan.



Table 3. Mixed-effects maximum-likelihood models for longitudinal production of each cytokine by the presence – absence of the SNP2253 risk allele (G).

modela estimate (s.e.)b t-value p-value

(a) IL-12 production ( pg ml21) 402.917 (0.144) 41.770 ,0.0001

herd (Lower Sabie) 0.483 (0.157) 24.623 ,0.0001

SNP2253 (G_) 0.551 (0.187) 23.187 0.0023

season (wet) 0.772 (0.152) 21.697 0.0915

n ¼ 64c; 15 w/risk allele

(b) IFNg production (ng ml21) 0.636 (0.074) 26.147 ,0.0001

treatment (control) 0.807 (0.099) 22.160 0.0349

SNP2253 (G_) 0.818 (0.148) 21.357 0.1800

bTB (þ) 1.142 (0.096) 1.378 0.2621

SNP2253 (G_) � bTB (þ) 1.407 (0.016) 2.115 0.1247

n ¼ 62c; 11 w/risk allele

(c) IL-4 production ( pg ml21) ,0.001 (201.564) 21.653 0.0991

SNP2253 (G_) 0.461 (0.433) 21.787 0.0790

bTB (þ) 0.701 (0.339) 21.046 0.4856

capture year 1.184 (0.100) 1.683 0.3414

season (wet) 4.385 (0.231) 23.573 0.1737

SNP2253 (G_) � bTB (þ) 7.154 (0.641) 3.069 0.2005

n ¼ 62c; 11 w/risk allele
aProduction of each cytokine was measured following incubation of whole blood with a pokeweed mitogen.
bEstimates in all cytokine models are back-transformed and represent a multiplicative increase in cytokine production.
cOnly animals with one missing data point or less are included in each model to control for consistency of age distribution across samples (64 animals had at
least 4/5 samples for IL-12 and 62 animals had at least 8/9 samples for IL-4 and IFNg).

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190914

6

(b) Inflammatory phenotypes
We assessed broad-scale putative mechanisms of increased

bTB conversion risk in this herd by comparing allelic vari-

ation at the loci of interest to cytokine production following

whole blood stimulation. Animals heterozygous or homozy-

gous for the risk allele (G_) at SNP2253 produced 45% less

IL-12 than animals with the CC genotype regardless of bTB

status, while allelic variation at SNP2253 was not predictive

of differences in IFNg or IL-4 production (table 3, figure 3).

These results suggest no difference in activation of TH1 and

TH2 cells among SNP2253 genotypes, but that the production

of IL-12 from activated phagocytes in the blood (monocytes/

macrophages) may be reduced in animals harbouring the risk

allele. By contrast, we observed no significant patterns in

cytokine production relative to SNP3195 alleles and this

factor was not retained during model selection in any of

the cytokine models. We therefore found no cytokine-based

evidence for variation in TH1, TH2 or phagocyte activation

associating with variation in SNP3195 genotype (electronic

supplementary material, figure S2). Taken together, these

results suggest distinct mechanisms of infection resistance

associating with variation at these two loci that have an additive

effect on overall infection risk (figure 3).
4. Discussion
Here, we demonstrate genetic variation near a specific gene

related to anti-bacterial immunity and phagocyte activation

associating with measurable differences in immune reactivity
and driving massive variation in bTB infection resistance in a

wild mammalian population. This is one of very few studies

taking a multi-level approach, connecting infection resistance

phenotypes across scales, from an individual-level disease

trait to patterns in immune reactivity in the wild. Further-

more, one genomic region associating with age at onset of

bTB contains the gene PEX14 which is directly related to

inducible anti-bacterial immunity and apoptosis of infected

phagocytes [74,75]. Production of IL-12 during whole blood

stimulation is significantly reduced in animals harbouring

the risk allele at this locus and these animals are at an

over fivefold increased risk of succumbing to bTB. Taken

together, these putative candidate mechanisms and variation

in IL-12 relative to genotype suggest appreciable differences

in inflammatory phenotype among buffalo of different

genotypes at SNP2253, which directly impacts risk of bTB

infection. By contrast, we detected no association between

SNP3195 genotype and the cytokines assayed here,

suggesting that alternative immune mechanisms underlie

variation in bTB risk associating with this locus. We were

also not able to further annotate the ‘gene desert’ surround-

ing SNP3195, and thus cannot put forth putative

mechanisms for increased infection risk associating with the

rare allele at this locus.

Multiscale studies of infectious diseases in wild popu-

lations can yield discoveries in applied and basic aspects of

infectious disease biology, and build upon laboratory-based

studies. For example, foundational ecoimmunology work in

wild rodents has uncovered dramatic differences in

immune function between laboratory mice and their wild
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Figure 3. Cytokine production by SNP2253 genotype. (a) Animals heterozy-
gous or homozygous for the ‘G’ risk allele produce 45% less IL-12 than CC
animals following pokeweed mitogen stimulation of whole blood. By con-
trast, there is no detectable difference in (b) interferon gamma (IFNg) or
(c) interleukin 4 (IL-4) production relative to SNP2253 genotype in this popu-
lation. (Online version in colour.)
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congeners [5,6,10], demonstrating that simply giving disease

a real-world environmental context can shift findings dra-

matically. Building upon this work, putative candidate

genes for tolerance have been identified in wild rodents

and tied to gene expression-based biomarkers, connecting

animal-level disease to fine-scale gene expression patterns

[11,12]. Multiscale studies can also uncover targets for

treatment or intervention, by identifying genetic and

immunologic mechanisms underlying variation in disease

susceptibility while allowing for natural variation in hosts,

microbes and environmental context. The findings presented

here mirror immunological discoveries in controlled labora-

tory experiments in M. tuberculosis-infected mice [76–78]
and human cell lines [70,79,80], substantiating the important

role of IL-12 and phagocyte activation in tuberculosis

progression, even outside of the laboratory. In addition, mul-

tiscale studies that link genetic variation to disease dynamics

and host fitness in wild systems provide an empirical foun-

dation for models of host–pathogen coevolutionary

dynamics, sharpening our ability to predict and understand

long-term changes in host–pathogen interactions. Interest-

ingly, bTB was only recently detected in this population of

African buffalo in 1990 [36], representing a relatively new

coevolutionary partner, which may explain why major alleles

at these loci have not gone to fixation. Furthermore, bTB

infection has been previously shown to increase mortality

risk in this group of animals and animals infected earlier in

life had lower reproductive rates [37,40]. Given the steep fit-

ness costs of bTB infection, we would expect alleles

associating with infection resistance to be under positive

selection in this population. However, co-infection is

common in this system [38,56,81], and fitness costs imposed

by other pathogens may alter coevolutionary trajectories,

resulting in the maintenance of variation at these bTB

infection resistance loci.

Mycobacterial pathogens have evolved many mechan-

isms that directly modify host immune function, including

the reduction of antigen presentation and activation in pha-

gocytes and the active scavenging of reactive oxygen

species (ROS) to avoid degradation [26]. Highly virulent

strains of M. tuberculosis often escape the phagosome

(where pathogens are gathered and degraded), prevent host

cell apoptosis, and replicate in the cytosolic space, effectively

avoiding a humoral immune response [29,31,32]. The balance

between host immune recognition and mycobacterial evasion

determines disease outcome at the animal level, leading to

successful immune clearance or localized tissue necrosis

and morbidity [30]. Phagocytes undergo activation through

pathogen recognition, or by cytokine stimulation from TH1

cells producing IFNg [82]. Since pokeweed mitogens are

used to test the efficacy of T cell-dependent immunity, we con-

clude that phagocytes classically activated by IFNg are

producing the IL-12 present in stimulated blood. Variation in

IL-12 production suggests variation in phagocyte activation

among SNP2253 genotypes, and may be a putative mechan-

ism for variation in bTB resistance in this population. IL-12

has been repeatedly identified as an important cytokine in

anti-mycobacterial immunity [33,34] and is highly upregulated

locally in humans with active pulmonary tuberculosis [83–86].

Additionally, high variability in IL-12 expression has been

demonstrated across murine families of varying M. tuberculosis
susceptibility [83], mirroring the reduced IL-12 production

observed here in susceptible buffalo. By contrast, we observed

no difference in IFNg or IL-4 production among SNP2253

genotypes. Thus, we conclude that the activation of TH1 and

TH2 T-cells is not directly affected by variation at this locus.

Within activated macrophages, peroxisomes contribute to

acidification of the phagosome through the production of

ROS, directly affecting the cell’s ability to degrade pathogens

[75,87]. PEX14 is an integral peroxisomal protein [88,89],

playing a critical role in both peroxisome formation and

degradation, processes paramount to the ability to control

and modify cellular ROS levels [90]. In plants, peroxisomal

ROS production has been directly linked to inducible pre-

invasion resistance mechanisms [91]. In animals, peroxisomes

can modify cellular ROS concentrations leading to



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190914

8
macrophage apoptosis and increased local inflammation [87].

Interestingly, another gene near SNP2253, DNA fragmenta-

tion factor subunit alpha (DFFA; 35 kb upstream of

SNP2253), plays an important role in the cellular machinery

orchestrating apoptosis in response to infection [92]. Variation

in these genes near SNP2253 may contribute to underlying

variation in phagocyte-mediated pathogen degradation, apop-

tosis due to infection and the observed IL-12 inflammatory

phenotype.

Free-ranging African buffalo and bTB provide a model

system for understanding the ecological and evolutionary

dynamics of mycobacterial pathogens that continue to

plague humans, as well as wild and domestic animals.

Here, we have identified putative mechanisms of bTB resist-

ance that substantiate and build upon previous laboratory

findings by exploring tuberculosis resistance within a natural

population. We hope that future approaches in natural sys-

tems will complement advances from laboratory-based

studies in understanding and outwitting one of humankind’s

most enduring scourges.
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