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Immunity is one of the most variable phenotypic traits in animals; however,
some individuals may show less fluctuation in immune traits, resulting in
stable patterns of immune variation over time. It is currently unknown
whether immune variation has consequences for infectious disease risk. In
this study, we identified moderately stable immune traits in wild African
buffalo and askedwhether the stability of these traits affected bovine tubercu-
losis (TB) infection risk. We found that adaptive immune traits such as the
level of interferon-γ (IFN-γ) released after white blood cell stimulation,
the number of circulating lymphocytes and the level of antibodies against
bovine adenovirus-3 were moderately repeatable (i.e. stable) over time,
whereas parameters related to innate immunity either had low repeatability
(circulating eosinophil numbers) or were not repeatable (e.g. neutrophil num-
bers, plasma bacteria killing capacity). Intriguingly, individuals with more
repeatable IFN-γ and lymphocyte levels were at a significantly higher risk
of acquiring TB infection. In stark contrast, average IFN-γ and lymphocyte
levels were poor predictors of TB risk, indicating that immune variability
rather than absolute response level better captured variation in disease
susceptibility. This work highlights the important and under-appreciated
role of immune variability as a predictor of infection risk.
1. Introduction
Immune function is among the most variable of phenotypic traits in vertebrates,
showing high levels of heterogeneity both within and among individuals [1–3].
For example, individual immune responses can shift drastically over time in
response to demographic (e.g. age, reproductive status; [4,5]) and environmental
(e.g. pathogen exposure; [6,7]) changes. However, recent studies suggest that
some individuals maintain fairly stable immune responses over time [2,7–9].
Such longitudinal stability of immune traits could have profound implications
for predicting individual responses to a wide range of immune challenges
[2,7]. However, whether stable immune traits are predictive of infectious disease
risk is completely unknown.

The longitudinal stability of biological traits can be quantified by estimating
repeatability, defined as the fraction of phenotypic variation resulting from differ-
ences between individuals [10]. Repeatable (or stable) traits are those for which
there is relatively low within-individual variance compared to high among-
individual variance. In humans and wildlife, high among-individual variance in
immune traits such as cytokine, antibody and leucocyte concentrations is
common, and the repeatability of such traits can be estimated when the same
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individuals are sampledmultiple times [2,8]. Interestingly, emer-
ging evidence suggests that there is considerable variability in
the degree to which different immune traits are repeatable. For
example, across 60 wild voles sampled two to seven times over
an average 102 day period, levels of expression of the T-helper
(Th) 1 cytokine interferon-γ (IFN-γ)were significantly repeatable,
whereas the expression of the Th 2 transcription factor GATA
binding protein 3 and the regulatory cytokine interleukin-10
were not [8]. Likewise, in humans, B-cell and CD4+ T-cell
subsets consistently showed higher repeatability than did
regulatory T cells [2,7,11]. Becausemost of the immune variation
in mammal populations probably arises from environmental
exposure to pathogens and commensals [3,7,12], differences in
the repeatability of particular immune traits suggest that the
environment elicits distinct effects on different components of
the immune system. However, the significance of these differ-
ences for disease susceptibility is not clear.

Tuberculosis (TB; caused by bacteria in the Mycobacterium
tuberculosis complex) is one of the most devastating infectious
diseases of our time, accounting for nearly 2 million human
deaths annually [13]. Domestic animals and wildlife also
experience substantial TB-related mortality (mainly owing to
Mycobacterium bovis, a member of the M. tuberculosis complex
and causative agent of bovine TB). Bovine TB is responsible
for approximately 25% of all disease-related deaths per
annum in cattle [14], and spillover of M. bovis from animals
to humans contributes to the global burden of human TB
[15]. Despite the impact of bovine TB on agriculture, public
health and conservation, very little is known about the factors
contributing to variation in disease susceptibility in animal
reservoirs. In sub-Saharan Africa, a region of the world with
one of the highest burdens of TB [13,16], African buffalo
(Syncerus caffer) act as the major reservoir of TB in the wild
[16,17]. The prevalence of TB in buffalo is reported to be as
high as 40% in some locations [18], and spillover from buffalo
to species such as cattle, lions (Panthera leo), giraffes (Giraffa
camelopardalis) and African wild dogs (Lycaon pictus) is of
great public health and conservation concern [19]. Given the
important role buffalo play in the ecology of TB, new insight
into the factors that drive variation in infection risk in this
species can contribute to disease control and management.

To evaluate the role of immune stability in TB risk,we tested
for the presence of repeatable immune traits in wild African
buffalo, and asked whether the stability of specific traits was
predictive of future risk of bovine TB infection. To do this,
first, we tracked multiple immune parameters in the same indi-
viduals over time to identify which immune traits were most
repeatable. Next, we examined whether individual stability in
repeatable immune traits was predictive of TB infection. Our
results show that some aspects of immunity aremore repeatable
than others, and intriguingly, that the stability of certain
immune traits is a strong predictor of future risk of infection.
These findings suggest that a better understanding of immune
stability can facilitate the profiling of individual disease risk.
2. Methods
(a) Animal sampling
One hundred and forty-five female African buffalo, ranging in
age from 1.5 to 13 years, were captured in Kruger National
Park (KNP), South Africa, between June 2008 and August 2012.
These animals represent a subset of a larger group of individuals
captured for a study on the effects of anthelmintic treatment on
bovine TB outcomes [20]. The animals used for the current
study were control individuals that did not receive anthelmintic
treatment. Individuals were sampled approximately every 180
days, with an average of six (range: 3–9) captures per animal.
For sampling, buffalo were chemically immobilized with a mix
of etorphine (M99) and ketamine delivered by dart. Blood
samples were collected via jugular venipuncture into EDTA
and heparin tubes for use in immunological assays and TB diag-
nostics. Age was estimated by incisor eruption and tooth wear
patterns [21]. Pregnancy status (not pregnant, early, mid or late
pregnancy) was assessed by rectal palpation as described for
Egyptian buffalo [22]. The presence or absence of milk in the
mammary gland (lactation status) was assessed by manually
milking all four teats. Body condition was assessed using a
manual fat scoring system standardized for African buffalo
[23]. All animals were initially captured from two herds in dis-
tinct locations: Crocodile Bridge (CB) and Lower Sabie (LS).
Upon recapture, herd membership was assigned as CB, LS or
Other if an animal dispersed to another location and herd.

(b) Immune parameters
Wemeasured 10 immune parameters that represent both the innate
and adaptive branches of the immune response. Bacteria killing
ability (BKA) of plasma against Escherichia coli and Staphylococcus
aureus were used as measures of innate humoural immunity.
BKAs were performed in a 96-well plate format as described in
French &Neuman-Lee [24], using frozen plasma diluted in culture
media containing 105 colony forming units (CFU) of E. coli strain
ATCC no. 8739 (BKA E. coli) and 105 CFUs of S. aureus strain
ATCC no. 6538 (BKA S. aureus) [25]. Plasma samples were pro-
cessed in bulk at the end of the study to minimize the effects of
sample storage time on variation in killing capacity. Killing ability
ranged from 0.01 to 100% (mean = 64%) and 0.01 to 60.8% (mean =
25.7%), for E. coli and S. aureus, respectively. Variation in sample
storage time prior to processing had no notable effect on
killing ability (E. coli: generalized linear mixed model (GLMM):
n = 554, estimate = 1.79 × 10−5 ± 2.1 × 10−6, Z = 0.83, p = 0.40;
S. aureus: GLMM: n = 563, estimate =−3.48 × 10−5 ± 2.4 × 105,
Z =−1.4, p = 0.162).

White blood cell and platelet counts were used as measures of
cellular innate immunity. Total counts were performed on an
automated impedance cell counter (model ABC-VET), and differ-
ential counts were done manually from blood smears to estimate
the fraction of each white blood cell type [20]. The concentrations
(cells µl−1) of neutrophils, lymphocytes, monocytes and eosino-
phils were calculated by multiplying the proportion of each cell
type from blood smears by the total number of white blood
cells per microlitre. All cell types, except lymphocytes, were
considered as innate immune parameters based on the fact that
most lymphocytes in the peripheral blood of mammals (approx.
90%) are B- and T-lymphocytes [26].

In addition to lymphocytes, we measured three other aspects
of adaptive immunity: concentrations of the cytokines (i) IFN-γ
and (ii) interleukin-4 (IL-4) after stimulation of whole blood with
pokeweed mitogen (Sigma Aldrich, St Louis, MO, USA), and
(iii) antibodies to bovine adenovirus (BADV-3). IFN-γ concen-
tration in plasma was measured using a bovine IFN-γ ELISA
(MCA5638KZZ, Bio-Rad, Hercules, CA, USA) following
previously described methods [20]. IL-4 concentration in plasma
was measured using a standard sandwich ELISA designed for
bovines (CC308 and CC313, Bio-Rad) as previously described
[27]. For both IFN-γ and IL-4, in vitro stimulation of white blood
cells with the B- and T-cell mitogen pokeweed was used to more
accurately measure adaptive immune cell reactivity compared to
baseline levels. Finally, given that all study animals were positive
for BADV-3 at first capture, and the ubiquity of adenoviruses in
the bovine respiratory and gastrointestinal mucosae [28], we
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used antibody responsiveness to BADV-3 at subsequent captures
as a measure of the level of immune reactivity against a specific
pathogen. Serum BADV-3 antibodies were measured using an
indirect ELISA kit designed against whole BADV-3 viral antigen
and following the manufacturer’s instructions (BIO K-063,
Bio-X Diagnostics, Belgium). Mild to moderate cross-reactivity
against other Serogroup-I adenoviruses is expected with this test
(BADVs 1–2 and 9), while no cross-reactivity should occur against
Serogroup-II adenoviruses (BADVs 4–8) (Bio-X Diagnostics,
Belgium). Antibody concentration was semi-quantitatively
determined based on the optic absorbance of the sample in
relation to a negative control provided by the manufacturer.

(c) Tuberculosis testing
Bovine TB infection status was assessed using a whole-blood
IFN-γ assay (BOVIGAM, Prionics, Switzerland) implemented
according to the manufacturer’s instructions and as described
in Ezenwa & Jolles [20]. For each animal, a time series of two
to nine test results were used to assign infection status (see [20]
for details on the assignment procedure).

(d) Data analyses
GLMMs were used to evaluate the effects of fixed (demographic
and environmental) and random (individual identity) factors on
the variance of immune traits and to estimate the repeatability
of immune traits. Separate models were fitted for each of the
10 focal immune parameters using the R package ‘glmmTMB’
[29]. Models included five fixed factors: age (in months), body
condition, lactation status, pregnancy status, season and one
random factor: animal identity (ID). The fixed factors were
selected based on their known effects on buffalo immune
responses [20,25,27,30,31]. Exploratory data analyses were used
to identify the appropriate error distributions for each response
variable following recommended statistical methods [32,33].
IFN-γ, BADV-3, platelets and BKAs had an approximately
normal distribution, so models with a Gaussian error structure
were fitted to these response variables. For leucocytes and IL-4,
we evaluated models with both Poisson and negative binomial
distributions. For monocytes and lymphocytes, we considered
the best model to be the one that minimized the Akaike infor-
mation criterion (AIC) and overdispersion and that did not
have convergence issues. For neutrophils, eosinophils and IL-4,
both Poisson and negative binomial models fitted poorly, so we
applied logarithmic transformations to these response variables,
and then fitted models with Gaussian error distributions to these
data. For all models, residuals were checked to ensure normality
and homoscedasticity. Because immune traits were sampled
longitudinally over time, we also tested for evidence of temporal
autocorrelation in the selected model residuals using a Durbin–
Watson (DW) test applied to scaled residuals and implemented
in the R package ‘DHARMa’ [34]. There was no evidence of
either positive or negative autocorrelation in the residuals of all
final models (DW range = 1.960–2.07, p = 0.489–0.80).

We estimated the proportion of model variance explained by
fixed versus random factors by calculating marginal (R2

GLMMðmÞ)
and conditional (R2

GLMMðcÞ) pseudo-R2 values with the r.squar-
ed.glmm function in the R package ‘MuMIn’ [35]. R2

GLMMðmÞ
represents the percentage of variance explained by fixed factors
and R2

GLMM(c) represents the percentage of variance explained by
the full model, including random effects. Therefore, the variance
attributed to the random factor (animal ID), or adjusted-repeatabil-
ity, was calculated as:R2

GLMMðcÞ � R2
GLMMðmÞ [36].We also calculated

adjusted-repeatability for each model using the R package ‘rptR’
[37], which provides uncertainty estimates (s.e., 95% confidence
interval (CI) and p-value) via parametric bootstrapping. Both
methods yielded identical repeatability estimates.

To test whether repeatability in immune traits was associated
with the risk of TB infection, we first calculated each animal’s pre-
TB immune repeatability. For this analysis, we focused only on
the three immune traits (BADV-3 antibodies, IFN-γ, lymphocytes)
that emerged as moderately repeatable based on our GLMM ana-
lyses. We considered repeatability values between 0.3 and 0.5 to
be ‘moderately repeatable’ following the categorical classification
of effect sizes proposed by Cohen [38] for correlation coefficients.
Using the first three observations (in longitudinal sequence) taken
per animal, we calculated the repeatability of immune traits for
each individual using the standard formula for raw repeatability:

R ¼ s2A
s2 þ s2A

where s2A is the variance among individuals and ѕ2 is the variance
within individuals [10,37]. Because R can be influenced by among-
individual variance, we also calculated a measure of immune
stability that does not include among-individual variance: the coef-
ficient of variation (CV, s.d./mean). These two stability estimates
were highly correlated (Spearman’s rank correlation: lymphocytes:
ρ =−0.79, IFN-γ: ρ =−0.82, BADV-3: ρ =−0.85), suggesting that
variation in R was driven mostly by within-individual variance.
Next, we tested if these stability estimates were good predictors
of TB infection risk by fitting Cox proportional hazard regression
models implemented in the ‘survival’ package in R [39]. Separate
univariate models included the time animals were at risk of TB
infection as the response variable, and either lymphocyte, IFN-γ
or BADV-3 antibody stability as the predictor variable. Animals
that did not acquire TB during the study were right-censored.
The R and CV models yielded similar results (see the electronic
supplementarymaterial, table S1 for CVmodels), sowe performed
all further analyses using R as the measure of immune stability.

Finally, we compared the effect of immune stability versus
absolute magnitude on infection risk. To do this, we fitted
univariate Cox models using the average values of the three
immune traits over the same time period (first three captures)
over which immune stability (R) was estimated. We also tested if
a combination of repeatability and absolute values was the better
predictor of TB infection risk by fittingmultivariate Cox regression
models with an interaction between repeatability andmean values
for each immune trait. We included the age of animals at initial
capture and herdmembership in thesemodels as covariates to con-
trol for the fact that not all animals were captured at the same age
and that TB incidence varies with age in buffalo [20], and to
account for possible herd effects on TB risk [20]. These models
were ranked using AIC corrected for small sample size (AICc).
We considered models with a ΔAICc of at least 2.0 to be signifi-
cantly different from one another. Lastly, to determine if the
effect of the repeatability of different immune traits was additive
or multiplicative, we compared a series of Cox regression models
including different combinations of the predictors emerging as
significant in univariate tests (i.e. IFN-γ and lymphocyte repeat-
ability). Age and herd were included as covariates in all
candidate models. The best fitting model was selected through a
multimodel selection approach implemented in the ‘MuMIn’pack-
age [35]; ranking of models was based on AICc. For all Cox
regression models, the proportional hazard assumption of predic-
tors was checked by plotting the Schoenfeld residuals versus time
for continuous predictors and by plotting the log–log-transformed
Kaplan–Meier survival curves for categorical predictors [40].
3. Results
(a) Adaptive immune traits are more repeatable than

innate immune traits
All four immune traits associated with adaptive immunity
were significantly repeatable (table 1). Adjusted-repeatability
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Figure 1. Adjusted repeatability for 10 different immune traits measured in
African buffalo. Traits that measure more specific (i.e. adaptive) arms of
immune function (black bars), tended to be more repeatable, whereas
traits that measure mostly innate immunity (grey bars) were less repeatable.
Error bars represent 95% s.e. BKA, bacterial killing ability.
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scores ranged from 34 to 40% for IFN-γ, lymphocytes and
BADV-3 antibodies, while for the fourth adaptive trait, IL-4,
repeatability was much lower, at 8% (figure 1). By contrast,
only one of six traits associated with innate immunity, eosino-
phils, was significantly repeatable, with a repeatability score
of 10% (table 1 and figure 1). All demographic and environ-
mental covariates emerged as significant predictors of at
least one immune trait, but these factors typically explained
very little variation (table 1). In fact, for all the adaptive
immune traits, individual identity explained substantially
more variation than did demographic and environmental fac-
tors (table 1). By contrast, for all six innate traits, demographic
and environmental covariates explained more or similarly
low, levels of variation as did individual identity (table 1).
Therefore, among-individual differences were generally
greater for adaptive immune traits compared to innate traits,
explaining the difference in repeatability between the two
groups of traits.
(b) Repeatable immune traits predict tuberculosis
infection risk

In addition to assaying immune traits, we also tested animals
for TB infection at each sampling point. At the beginning of the
study, 130 animals were negative for TB infection, but TB
prevalence in the study cohort increased over time (electronic
supplementary material, figure S1), such that by the end of the
study, 37 of 130 animals (28%) had acquired TB. Overall, 89
animals had sufficient pre-TB immune histories to allow indi-
vidual repeatability estimation, and of these, 27 acquired TB
(figure 2a). The individual repeatability of IFN-γ and lympho-
cytes emerged as significant predictors of TB risk, while
the repeatability of BADV antibodies did not (electronic
supplementary material, table S2).

For IFN-γ, higher repeatability was associated with a
higher risk of TB infection. Specifically, for each 1% increase
in IFN-γ repeatability, TB risk increased 1.05-fold (univariate
Cox regression : hazard ratio (HR) = 1.05, 95% CI = 1.02–1.07,
p = 0.0002; electronic supplementary material, table S2).
This translated into a 5.7-fold greater risk of TB infection for
individuals in the highest repeatability quartile compared to
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individuals in the lowest repeatability quartile (figure 2b).
In stark contrast with the repeatability results, the average
IFN-γ level was a poor predictor of TB infection
risk (univariate Cox regression: HR = 0.677, CI = 0.25–1.81,
p = 0.44; figure 2c). Using a multivariate model comparison
approach, top rankedmodels for the effect of IFN-γ on infection
risk included only a significant effect of IFN-γ repeatability
(electronic supplementary material, tables S3 and S4). This
suggests that it is the repeatability of this immune trait, not
merely its average value, that is a risk factor for TB infection.
Surprisingly, the model including an interaction between
IFN-γ repeatability and IFN-γ average ranked poorly (elec-
tronic supplementary material, table S3), suggesting that
stable IFN-γ levels elevate the risk of TB infection irrespective
of whether absolute values are low or high.

Similar to IFN-γ, longitudinal stability in the number of per-
ipheral blood lymphocytes was associated with a significant
increase in TB infection risk (electronic supplementary
material, table S2). Specifically, for each 1% increase in lympho-
cyte repeatability, TB risk increased 1.06-fold (univariate Cox
regression: HR= 1.064, CI = 1.03–1.10, p = 0.0001; electronic
supplementary material, table S2). This translated into a 9.1-
fold greater risk of TB infection for individuals in the highest
repeatability quartile compared to individuals in the lowest
repeatability quartile (figure 2d). The average lymphocyte
number was a poor predictor of TB infection risk (univariate



Table 2. Comparison of candidate Cox proportional hazard models of TB infection risk (n = 88, number of events = 27). (Models are ranked based on Akaike’s
information criteria corrected for small sample size (AICc). Detail on the top ranked model (highlighted in italics) is provided in the electronic supplementary
material, table S7.)

model d.f. logLik R2 AICc ΔAICc weight

IFN-γ repeatability + lymphocyte repeatability + age + herd 5 −87.6 0.76 188.71 0 0.72

IFN-γ repeatability + lymphocyte repeatability + IFN-γ repeatability × lymphocyte

repeatability + age + herd

6 −87.0 0.77 190.22 2.05 0.25

lymphocytes repeatability + age + herd 4 −92.7 0.65 195.33 7.17 0.01

IFN-γ repeatability + age + herd 4 −95.2 0.58 200.25 12.08 0.01
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Cox regression: HR= 0.871, CI = 0.61–1.24, p = 0.45; figure 2e).
As observed for IFN-γ, in a multivariate model comparison,
only lymphocyte repeatability emerged as a significant predic-
tor of TB infection risk in the top ranked models (electronic
supplementary material, tables S5 and S6). Thus, once again,
repeatability was more important than the average trait value
and high levels of stability in lymphocyte numbers elevated
the risk of TB infection irrespective of the magnitude of the
absolute values.

(c) Effects of interferon-γ and lymphocyte repeatability
on tuberculosis risk are independent and additive

Because the repeatability of both IFN-γ and lymphocytes
was associated with TB infection risk, we examined whether
there were combinatorial (multiplicative or additive) effects
on individuals expressing high repeatability in both traits.
We compared a series of models including different combi-
nations of IFN-γ repeatability, lymphocyte repeatability and
the interaction between the two, while controlling for individ-
ual age and herd membership. The best performing model
included the main effects of both IFN-γ and lymphocyte
repeatability, but not an interaction between the two (table 2;
electronic supplementary material, table S7). This result
suggests that the expression of stability in these two different
immune traits has non-overlapping and additive effects on
the risk of acquiring TB.
4. Discussion
In natural populations, the identification of repeatable
immune traits is relatively recent, raising intriguing questions
about the consequences of this form of variation at the
individual and population level [3,8]. This is especially true
if the likelihood of infection or disease outcomes differ for
individuals with higher or lower levels of immune stability.
In this study, we found that some immune traits are repeata-
ble (i.e. stable) in wild African buffalo, and that individuals
with more stable levels of IFN-γ and lymphocytes were at
higher risk of acquiring bovine TB. These findings suggest
that immune variation over time may be central to under-
standing infection risk heterogeneity in some populations.

Very few studies have measured how immune traits vary
over time in wild animals under natural conditions [41–45].
In humans, though, an emerging body of work is showing
that some adaptive and innate cellular immune traits are rela-
tively stable over time, and that this stability is mostly driven
by environmental factors [2,3,7,11]. Intriguingly, the studies
that exist for other vertebrates (e.g. birds: [5,44]; small mam-
mals: [8]) suggest that stable immune profiles, as described in
humans, also apply to wild animals. However, in animals,
it is not clear which components of immunity are more
likely to exhibit stability. In buffalo, we found that immune
stability, quantified as repeatability, was closely associated
with the level of specificity of the response. Specifically, for
traits closely related to adaptive immunity, we found the
responses of individual animals to be significantly correlated
over time, with three of four of these traits showing moderate
repeatability (R = 0.34–0.40), whereas for innate immune
traits, there was little correlation in individual responses
over time and repeatability tended to be non-significant
(with the exception of eosinophils) and uniformly low (R =
0.04–0.10). Contrary to our findings, studies on birds have
found moderate to high (R = 0.4–0.63) repeatabilities for
innate traits such as serum bacteria killing capacity against
E. coli [45,46]. However, repeatability calculations in these
studies did not account for variance explained by covariates
likely to influence immunity such as body condition, which
can inflate repeatability estimates [36,37]. To our knowledge,
no studies on wild mammals have simultaneously examined
repeatabilities for innate and adaptive immune traits within
the same system. However, with respect to adaptive
immune traits, a study of wild voles found that the repeat-
ability of IFN-γ was significant at R = 0.2 [8], while a study
of Soay sheep found the repeatabilities of various antibodies,
such as total immunoglobulin M (IgM) and parasite-specific
IgM, to be moderate (R = 0.28–0.43) [47]. In humans, repeat-
abilities of adaptive immune traits (B- and T-cell subsets)
can be very high (average R = 0.8) [2]; however, most
human studies monitor study subjects over short time inter-
vals (days–weeks) and measure hundreds of highly specific
leucocyte subsets, which probably facilitates the identification
of highly repeatable immune traits [2,3,7].

A fundamental difference between innate and adaptive
immune traits is that innate effector mechanisms respond to
a wide range of stimuli, while adaptive mechanisms respond
to a much narrower range of stimuli [48]. Because effector
mechanisms of innate immunity are influenced by a wide
spectrum of pathogens and environmental exposures
[48,49], innate immune experience could accumulate at a
similar rate in most individuals in a population, decreasing
among-individual differences [3], thereby reducing repeat-
ability. By contrast, the opposite could occur for adaptive
traits, as after activation of innate pathways, these immune
traits are stimulated by a narrower range of pathogens.
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Therefore, the likelihood of differential exposure among indi-
viduals in the same population is high, potentially leading to
higher among-individual differences in these traits [2,3,7,11],
and higher repeatability. In support of this idea, exposure to
certain pathogens, such as cytomegalovirus in humans, gen-
erates permanent differences in the profiles of innate immune
traits between infected and non-infected individuals, increas-
ing between individual variance, and potentially, the
repeatability of these traits [7,11,12,50]. Moreover, in our
study, all innate immune traits showed 20% lower among-
versus within-individual variance (repeatability) when com-
pared with adaptive immune traits (see ‘R’ values in
table 1). Thus, the contrasting levels of stability we observed
in adaptive versus innate immune traits, and across all
immune traits, more generally, could relate to how different
immune pathways are stimulated and how immunological
variation between individuals is created, and maintained, in
a population.

TB infection risk is known to be variable across individ-
uals in animals (where infection is caused mainly by
M. bovis: [51,52]) and humans (where infection is caused
mainly by M. tuberculosis: [53,54]). However, the factors that
underlie these different resistance profiles are not fully under-
stood, although several genetic and immune mechanisms
have been explored [51–56]. Our results suggest that the
stability of certain immune traits may be an important contri-
butor to infection resistance. Indeed, the two immune traits
for which we found strong links between stability and infec-
tion risk (IFN-γ and lymphocytes), both play well-described
roles in TB defence, providing a strong rationale for why
these two traits emerged as predictors of risk. IFN-γ plays a
crucial role in the host response to both M. tuberculosis and
M. bovis [57,58]. For example, during M. bovis infection in
cattle and M. tuberculosis infection in humans, IFN-γ activates
nitric oxide production within macrophages, enhancing their
mycobacterial killing capacity [56–60]. A strong IFN-γ
response is also related to high levels of other immune
effector molecules, such as nuclear factor kappa-light-chain-
enhancer of B cells and tumour necrosis factor alpha
(TNF-α), which are associated with early clearance of
M. tuberculosis infection, and therefore, protection against dis-
ease [58]. Similarly, there is extensive evidence that an
effective response of lymphocytes, particularly CD4+ T lym-
phocytes, is critical for protection against M. bovis and M.
tuberculosis infection as well as TB disease progression [59–
62]. For instance, the number of CD4+ T lymphocytes was
the best predictor of M. tuberculosis infection risk among
HIV-infected people receiving anti-retroviral therapy [62].
Moreover, during M. bovis exposure, most IFN-γ is produced
by CD4+ T lymphocytes, and post exposure, a high pro-
portion of these cells change their phenotype to IFN-γ
producing cells [58]. IFN-γ producing CD4+ T cells are also
crucial for the production of antibodies that have been
shown to be protective against M. tuberculosis infection in
humans and rodent models [55].

Given the role of IFN-γ and lymphocytes in TB defence, the
association we found between higher stability of these
effectors and higher infection risk may reflect the reduced
capacity of some individuals to vary these immune traits as
appropriate when confronted with mycobacterial stimuli.
For instance, the stability of some arms of the immune
response could compromise the activation of effector mechan-
isms necessary for TB clearance, such as TNF-α-dependent
bacterial killing capacity of macrophages [61]. Moreover,
some in vitro studies suggest that at the cellular level, higher
variation in the immune response against M. tuberculosis
correlates with the presence of genetic factors associated
with resistance to TB [63]. These findings reinforce our hypoth-
esis that a sufficient level of variability in the immune response
may improve protection against TB in buffalo. Moreover,
because IFN-γ and lymphocytes are key players in the
immune response against many infectious agents, it is likely
that their levels of stability affect the infection risk of other
pathogens, and reciprocally, that these pathogens have an
effect on immune stability. This reciprocal effect may be par-
ticularly important in the context of wildlife systems, like
buffalo [64], where individuals are typically infected by
many pathogens concurrently.

The level of immune reactivity of an individual has been
recognized for some time as an important predictor of protec-
tion or time to recovery from infection [65,66]. However, there
has been very little work done on developing predictive fra-
meworks based on levels of variation in immune reactivity
exhibited by individuals over time [3]. Our finding that
average IFN-γ and lymphocyte response levels were poor
predictors of infection risk compared to the stability of
these responses over time suggests that immune stability
may be an important, and under-appreciated, driver of vari-
ation in disease outcomes. Indeed, recent work suggests that
in humans, responses to vaccination can be predicted by
monitoring immune traits that exhibit longitudinal stability
[2,7,11]. Here, we provide novel evidence that infection risk
is also associated with the stability of some immune traits.
Further work is necessary to understand the underlying
drivers of the patterns of immune stability we observed,
and why higher immune variability confers protection
against TB infection. However, our results for TB might trans-
late to other host-pathogen systems where strong CD4+ T
lymphocytes and IFN-γ responses are associated with protec-
tion and clearance. More generally, our results suggest that
quantifying the stability of immune traits may be a powerful
new tool for predicting disease risk in natural populations.
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