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High levels of social connectivity among group-living animals have been
hypothesized to benefit individuals by creating opportunities to rapidly
reseed the microbiome and maintain stability against disruption. We
tested this hypothesis by perturbing the microbiome of a wild population
of Grant’s gazelles with an antibiotic and asking whether microbiome
recovery differs between individuals with high versus low levels of
social connectivity. We found that after treatment, individuals with high
social connectivity experienced a faster increase in microbiome richness
than less socially connected individuals. Unexpectedly, the rapid increase
in microbiome richness of highly connected individuals that received
treatment led to their microbiomes becoming more distinct relative to
the background population. Our results suggest that the microbiome of
individuals with high social connectivity can be rapidly recolonized after
a perturbation event, but this leads to a microbiome that is more distinct
from, rather than more similar to the unperturbed state. This work provides
new insight into the role of social interactions in shaping the microbiome.

1. Introduction
Social interactions are a key driver of pathogen transmission in animal
populations [1]. Recently, it has been shown that social behaviour also
plays a significant role in the transmission of commensal gut microbes [2–
6]. Among group-living animals, social interactions can create opportunities
for horizontal microbiome transmission through direct contact (e.g. physi-
cal interaction) or indirect contact (e.g. shared space use) [7,8]. Since the
gut microbiome provides a plethora of critical functions to its host, such
as protection against pathogens and extraction and absorption of nutrients,
access to a potentially greater diversity of commensal bacteria could be
considered a benefit of group living [9–11]. It is also hypothesized that
social transmission of commensal microbes can result in more stable and
resilient individual microbiomes because group members serve as sources
for replenishing the microbiome during perturbation events [8]. Given
substantial heterogeneity among individuals in the frequency and extent
of social interactions, this hypothesis implies that individuals with more
social connections should derive greater microbiome-related benefits, i.e. their
microbiomes should recover faster from perturbation.

Wild animal populations are increasingly exposed to anthropogenic threats
that perturb their microbiome. For example, the expanding use of antibiotics
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to battle human and veterinary animal pathogens has resulted in antibiotic spillover into wildlife species, reflected in an
increased number of antibiotic-resistant genes in wild microbiomes [12–14]. Yet, antibiotic-induced microbiome changes are
rarely studied in wild animals despite there being demonstrable consequences for humans and domestic animals [15,16]. In
this context, quantifying the influence of social behaviour on microbiome recovery can contribute to a general understanding of
factors that facilitate the microbiome stability of wild animals in the face of antibiotic disruption.

Here, we investigated how variation in social connectivity influenced gut microbiota recovery after antibiotic perturbation
in a wild population of female Grant’s gazelle (Nanger granti). Grant’s gazelles are polygynous ungulates with a resource
defence-based mating system in which males defend resource patches (i.e. territories) that vary in quality, and females track
resources by selecting among male territories [17]. This results in a fluid social system in which females frequently move
between social groups, with variation in social behaviour determined by individual life history and environmental context [18].
As such, social interactions among adult female gazelles are primarily characterized by indirect contact through shared space
use. By tracking individual gut microbiome richness and composition after antibiotic treatment of female gazelles, we tested
the hypothesis that more socially connected individuals recover more quickly from microbiome perturbation. Specifically, if
social interactions create opportunities for microbiome transmission, we predicted that following antibiotic treatment, more
socially connected individuals would show: (i) faster increases in microbiome richness and (ii) closer microbiome resemblance
to untreated individuals over time.

2. Methods
(a) Animal capture and treatment
We captured and sampled 51 female gazelles at Mpala Research Centre (MRC), Kenya over a four day period in June 2015 using
handheld net guns fired from a helicopter. Study animals ranged in age from 0.5 to 10 years of age, with a mean of 6 years (±2.5
years). All animals were given unique colour ear tags and randomly assigned to an antibiotic treatment or control group based
on the sequence of capture. Half of the individuals (treated) were given a single intramuscular injection of oxytetracycline (20
mg kg−1) and the other half (control) received saline injections. Oxytetracycline is a broad-spectrum antibiotic commonly used
in livestock that is effective against gram positive and negative bacteria [19,20]. The one-time application perturbed the gazelle
microbiome over both short (≤30 days) and longer (90 days) time scales (Sabey et al. in review [21]).

(b) Behavioural observations and social network analysis
Grant’s gazelle groups typically comprise either a single territorial male with adult females and juveniles or multiple non-terri-
torial males [17]. At MRC, the size of female groups within a territory can range from 2 to 20 individuals and females frequently
move among territories [18]. To quantify individual social connectivity in females, we monitored treated and control individuals
for 90 days following capture. We located groups by driving regular road transects between 06.30 and 18.30 h, defining a group
as a spatially distinct set of individuals engaged in coordinated activity [18].

Once a group of animals was sighted, we recorded the size, composition and location (GPS coordinate) of the group as
well as the identity of all tagged individuals. We observed 51 tagged individuals between 3 and 52 times during the study
period. We used these data to construct a pairwise social association matrix for the entire 90 day study period following the
‘gambit of the group’ assumption, where any two individuals observed in the same group were considered to be associated
[22]. We quantified associations on a daily scale, so individuals had the potential to be associated between 0 and 90 times
throughout the study. Next, we used the association matrix to generate a social network using the asnipe package in R [23]. In
the network, individuals are represented by nodes and edges are the associations between nodes. Edges were estimated using
the half weight index (HWI), which corrects for biases introduced by missed sightings of focal individuals, providing a closer
estimate of the real rate of association [24]. One limitation of the HWI is that it assumes all individuals have equal opportunities
for interaction [25]. We used the R package sna [26] to calculate weighted degree as a measure of social connectivity. Weighted
degree (hereafter called degree) is defined as the total sum and weight (i.e. number of reoccurring interactions) of edges
connected to a node [23]. Since animal identities were unknown prior to animal capture and tagging, degree was only estimated
after, not before, treatment.

(c) Microbiome sampling, processing and sequencing
We characterized the gut microbiome using faecal samples collected during behavioural observations. When a tagged individ-
ual was observed defecating, the sample was collected within 10 min, placed in a sterile 2 ml tube and stored on ice in the field.
In the lab, samples were stored at −20°C until further processing. Microbiome samples were collected from 32 (12 control, 20
treated) of 51 individuals contributing to the social network for a total of 91 samples, including 38 from control animals (mean
and range per individual: 3 [1–5]) and 53 from antibiotic-treated animals (mean and range: 3 [1–7]).

Total DNA was extracted from all samples using the MoBio PowerSoil DNA extraction kit. Amplification and sequencing
of samples and pre-processing of data were performed following Earth Microbiome Project protocols [27]. Briefly, we targeted
the microbiome by amplifying the V4 region of the 16S rRNA bacterial gene primers 515F and 806R in triplicate. Amplicons
were sequenced on an Illumina MiSeq (2 × 150 bp). We removed sequence reads of less than 150 bp in length and used Deblur
(v. 1.1.0) [28] to cluster reads into amplicon sequence variants (ASVs) that were imported to QIIME2 for analysis. We built
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a phylogenetic tree based on ASVs and assigned taxonomy using the Greengenes 2 reference database in QIIME2 [29]. To
remove ASVs corresponding to mitochondria and chloroplasts, we assigned taxonomy using the Greengenes database (v. 13.8)
as described in Sabey et al. [21, in review].

We also removed ASVs with a relative abundance of less than 0.01% across all samples. Following the filtering steps, all
samples were rarified to 7000 reads, and our final taxa table consisted of 979 unique ASVs. To assess phylogenetic relationships
among ASVs, we used the reference phylogeny from the Greengenes 2 database (v. 2022.10 [30]).

(d) Statistical analyses
To examine whether the rate of gain in microbial richness after treatment depended on social connectivity, we used linear mixed
effects models (LMMs). We used QIIME2 to estimate different dimensions of alpha diversity quantified as observed richness,
Chao 1, and Shannon diversity. Richness estimates the total number of ASVs without considering abundance; Chao1 better
captures the presence of rare ASVs and Shannon diversity combines richness and evenness [31], better reflecting changes in
ASV proportions. We ran separate LMMs for control and treated individuals post-treatment, with each diversity metric used
as a response variable and social connectivity (degree), age (in years), time (days post-treatment), and the interaction between
degree and time as predictor variables. We chose to run separate LMMs by treatment group rather than include a three-way
interaction in a single model (degree × treatment × time) to reduce model complexity and facilitate model interpretation. For
all models, animal ID was included as a random intercept to account for repeated sampling of individuals. LMMs were run
using the lme4 package [32] in R and model validity was evaluated via inspection of residuals as described in Zuur et al.
[33]. In addition, for models showing significant (p < 0.05) or marginal (p < 0.059) effects of social connectivity, we performed
influence tests using the influence.ME package [34]. We used animal ID as the grouping level for the influence analyses since
this was the level used for the random intercept in all LMMs, and we identified influential observations using a common Cook’s
distance cut-off (Cook’s D > 4/n), where n is the number of observations in the analysis [34]. All animal IDs with influence
estimates higher than this cut-off were considered influential. We then re-ran the LMMs, excluding samples associated with
high-influence animal ID observations, to evaluate the impact of these influential data points on model outcomes.

To test the hypothesis that after antibiotic treatment more socially connected individuals would show closer microbiome
resemblance to controls, we first examined whether degree and treatment were drivers of microbiome variation. We used
permutational multivariate analysis of variance (PERMANOVA) to test for a global effect of social connectivity and treatment
on microbial composition, quantified using four distinct metrics: weighted UniFrac, unweighted UniFrac, Bray–Curtis and
Jaccard. We ran separate PERMANOVAs using each community metric as a response variable and degree, treatment status,
time, age and interactions between degree × treatment, degree × time and degree × treatment × time as predictor variables.
Model permutations were restricted by animal ID to account for repeated sampling of individuals in vegan [35].

Next, we used pairwise PERMANOVA models to test for similarities in microbial composition associated with social connectivity
and treatment status. To do this, we binned individuals into categories based on degree and treatment. To bin the continuous ‘degree’
variable, we classified individuals with a degree score higher than the population mean plus one standard deviation (>0.02 + 0.013
[0.033]) as having ‘high’ social connectivity and those with degree scores ≤0.033 as having ‘low’ connectivity. We then created four
social connectivity–treatment categories: high–treated (n = 4 unique individuals, 13 samples), high–control (n = 3, 13), low–treated
(n = 16, 40) and low–control (n = 3, 13). Using these categories, we ran all pairwise combinations of PERMANOVAs to test for
differences in microbial composition between categories. The pairwise models included the four community metrics (weighted
UniFrac, unweighted UniFrac, Bray–Curtis, Jaccard) as separate response variables, with social connectivity–treatment category, age,
time and the interaction between social connectivity–treatment category and time as predictor variables. Model permutations were
restricted by animal ID to account for repeated sampling of individuals.

Finally, we used differential abundance analyses to identify specific ASVs that contributed to differences observed between
control and treated individuals. Differential abundance analyses were performed using Songbird, which calculates log-ratios
and then ranks ASVs based on these ratios [36]. We ran separate models for high and low individuals using treated individuals
as the reference group. For each model, the predictors included social connectivity–treatment category and time, with a positive
log-fold change indicating ASVs enriched in control samples and a negative change indicating ASVs enriched in treated
samples. We also performed Wilcoxon tests on the log-ratios of the top-ranked 15 ASVs from control and treated samples within
each pairwise comparison to determine whether there were significant differences, which would suggest that the top ASVs were
uniquely associated with control or treated individuals within the respective comparison.

3. Results
(a) Social network description
Over the three-month study period, we observed 51 individuals a total of 1028 times (mean = 20.2 ± 12.7 observations per
individual, figure 1a). Each individual was seen associating with between 1 and 40 (mean = 18.5) unique contacts and the edge
density of the social network was 0.340, suggesting a moderate level of connectivity between individuals (figure 1b). Weighted
degree estimates, which represent the sum of the edge weights for a node, ranged from 0 to 0.048 (mean = 0.02). The degree
distribution showed that the network was not highly aggregated (i.e. there is not a pattern of most individuals showing low
levels of connectivity and a few showing high levels of connectivity), and importantly, that control and treated individuals were
similarly distributed across levels of connectivity (figure 1c).
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(b) More socially connected individuals gain microbes faster
More socially connected individuals gained microbiome richness faster after antibiotic perturbation. Among antibiotic-treated
individuals, but not controls, the interaction between social connectivity and time was a significant predictor of observed
richness and a marginally significant predictor of Chao 1 (table 1, figure 2). In both cases, a higher degree was associated with
greater increases in microbiome richness over time, suggesting that more socially connected individuals gained microbes more
rapidly after treatment (figure 2a–c). No such association was observed for Shannon diversity (table 1, figure 2c). When we
re-ran these two models after removing influential observations, the social connectivity × time effect remained significant for
observed richness and disappeared for Chao 1 (electronic supplementary material, table S1).

(c) Microbiomes of more socially connected individuals are more compositionally distinct
In terms of microbiome composition, following antibiotic treatment, more socially connected individuals were less, not more,
similar to their control counterparts. Social connectivity interacted with treatment to explain variation in three of four micro-
biome community metrics (table 2), suggesting a role for social behaviour in shaping the response to antibiotic treatment.
In support, pairwise tests comparing differences in microbiome composition between more versus less socially connected,
antibiotic-treated individuals and their control counterparts (high–treated versus high–control and low–treated versus low–
control) revealed that for three out of four community metrics (Bray–Curtis, Jaccard, unweighted UniFrac) there were consistent
effects of treatment and the interaction between treatment and time on the microbiomes of high–treated compared to high–
control individuals (figure 3, electronic supplementary material, table S2). In contrast, the interaction between treatment and
time explained variation in microbiome composition for only one of four metrics in the comparison between low–treated and
low–control individuals (Bray–Curtis; figure 3, electronic supplementary material, table S2). This difference in responsiveness
between lows and highs suggests that following antibiotic treatment, the microbiomes of more socially connected individuals
were more likely to diverge from their control counterparts.

Interestingly, in pairwise comparisons of control individuals with different levels of connectivity (high–control versus
low–control) there were no significant effects of social connectivity or the interaction between social connectivity and time
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on microbiome composition, although there was a trend for one out of four community metrics (Bray–Curtis; electronic supple-
mentary material, table S2). In contrast, social connectivity and/or the interaction between social connectivity and time were
strong predictors of variation in microbiome composition across all community metrics in pairwise comparisons between
treated individuals with different levels of connectivity (electronic supplementary material, table S2). These patterns suggest
that antibiotic treatment magnified social differences in microbiome composition.

(d) Microbiomes of more socially connected individuals are more taxonomically divergent
Social connectivity was also associated with differences in microbial taxa enrichment in response to antibiotic treatment.
Overall, three taxa emerged as showing differences in enrichment in comparisons between treated and control individuals
within social connectivity categories: Bacteroidota, Firmicutes and Verrucomicrobiota. For all comparisons (low–treated versus
low–control and high–treated versus high–control), the log-fold change in the top 15 ASVs enriched in control versus treated
individuals was significantly different (Wilcoxon tests: low: W = 0, p < 0.001; high: W = 5, p < 0.001; figure 4). However, the
pattern of taxa enrichment between treated and control individuals was more distinct in the high-connectivity group (figure 4,
electronic supplementary material, tables S3 and S4).

Specifically, in the low-connectivity group, 10 of the top 15 ASVs enriched in both control and treated samples were
from Firmicutes and five were from Bacteroidota; whereas in the high-connectivity group, control samples were enriched in
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Table 2. PERMANOVA testing the effect of degree, age, treatment, time and their interactions on microbiome community composition. Model permutations were
restricted by animal ID to account for repeated sampling of individuals. Model output term abbreviations are: degrees of freedom (d.f.) and sums of squares (SS).
Significant ( ≤0.05) and marginal ( ≤0.059) p-values are given in bold.

d.f. SS R2 F-value p‐value

Bray–Curtis

degree 1 0.553 0.027 2.628 0.037
age 1 0.390 0.019 1.856 0.009

treatment 1 0.333 0.017 1.584 0.057

time 1 0.273 0.014 1.299 0.541

degree × treatment 1 0.427 0.021 2.030 0.004

degree × time 1 0.238 0.012 1.130 0.481

treatment × time 1 0.373 0.019 1.774 0.002

degree × treatment × time 1 0.271 0.013 1.290 0.491

residual 82 17.249 0.858

total 90 20.107 1.000

Jaccard

degree 1 0.368 0.021 2.017 0.068

age 1 0.303 0.018 1.661 0.034

treatment 1 0.306 0.018 1.676 0.090

time 1 0.236 0.014 1.290 0.426

degree × treatment 1 0.336 0.020 1.840 0.059

degree × time 1 0.220 0.013 1.205 0.124

treatment × time 1 0.222 0.013 1.216 0.268

degree × treatment × time 1 0.261 0.015 1.427 0.066

residual 82 14.969 0.869

total 90 17.220 1.000

unweighted UniFrac

degree 1 0.203 0.023 2.206 0.095

age 1 0.148 0.017 1.604 0.050

treatment 1 0.181 0.021 1.963 0.111

time 1 0.109 0.013 1.189 0.765

degree × treatment 1 0.173 0.020 1.882 0.039

degree × time 1 0.113 0.013 1.233 0.183

treatment × time 1 0.121 0.014 1.314 0.218

degree × treatment × time 1 0.161 0.018 1.749 0.017
residual 82 7.540 0.862

total 90 8.749 1

weighted UniFrac
degree 1 0.02 0.02 1.89 0.143

age 1 0.02 0.02 1.85 0.147

treatment 1 0.02 0.02 1.79 0.153

time 1 0.01 0.01 0.78 0.876

degree × treatment 1 0.04 0.04 3.51 0.155

degree × time 1 0.01 0.01 0.73 0.578

treatment × time 1 0.05 0.04 3.80 0.037
degree × treatment × time 1 0.03 0.03 2.71 0.380

residual 82 0.98 0.83

total 90 1.18 1.00
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Bacteroidota (8/15 ASVs) and Firmicutes (7/15), while treated samples were enriched in Bacteroidota (9/15), Firmicutes (4/15)
and Verrucomicrobiota (2/15), suggesting a loss of Firmicutes and gain of Verrucomicrobiota in this group.

4. Discussion
Microbiome disruptions in wild animals are becoming increasingly common in response to continuous anthropogenic
challenges [37]. Understanding mechanisms that maintain microbiome stability and resilience is important for quantifying how
species are responding to these challenges. Because social interactions are key drivers of microbiome sharing among group-liv-
ing animals and may contribute to microbiome resilience, heterogeneity in social behaviour may help explain variation in the
resilience of wild animal microbiomes to perturbation [8]. We tested this hypothesis using an antibiotic perturbation experiment
in a wild social mammal. We found that high social connectivity led to faster rates of microbiome acquisition after antibiotic
disruption. However, the increase in richness resulted in microbiomes that diverged from their control counterparts. These
results suggest that higher social connectivity drives rapid rates of microbial accumulation after disruption, but, contrary to
expectation, the microbes gained resulted in increased dissimilarity between the microbiomes of disrupted and unmanipulated
individuals. Our taxonomic analyses further support this conclusion by revealing greater divergence in specific microbial taxa
among more socially connected individuals after treatment.

Rapid increases in species richness after disturbance are a common sign of resilience across ecosystems [38,39]. During
ecosystem disruption (e.g. fire, grazing, habitat fragmentation) the creation of new niches can facilitate an increase in species
immigration from the regional pool [40–42]. Analogous to large-scale ecosystem disruption, group-level microbiomes can be
considered regional pools; thus, the microbiomes of more socially connected individuals within a group should experience
higher rates of immigrating microbes during periods of disruption. This has been demonstrated in lab mice, where the
microbiomes of cohoused individuals recovered faster than those of singly housed individuals after antibiotic treatment [43].
In support, we found that more socially connected individuals who received an antibiotic treatment gained microbiome
richness at a faster rate than less-connected individuals. Specifically, among antibiotic-treated animals, the interaction between
social connectivity (measured as weighted degree) and time was a predictor of observed microbial richness and to a lesser
degree Chao 1, where individuals with a higher degree increased more quickly in richness over time (figure 2, table 1,
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electronic supplementary material, table S1). Similarly, studies of chimpanzees, sifakas and woodrats have described positive
associations between social connectivity and alpha diversity in a context without antibiotic treatment [2,5,44]. Thus, the more
rapid immigration of taxa from the regional (group) microbiome pool into the microbiomes of highly connected individuals in
our study, and others, implies that social contact is a key mechanism facilitating the gain in microbial taxa.

Past studies suggest that social transmission of the microbiome tends to increase similarity between group members [3,5,45].
This homogenization process is fundamental to the hypothesis that social contact is a mechanism that facilitates microbiome
stability within groups [8]. We performed pairwise analyses using social connectivity–treatment categories (high–control, low–
control, high–treated, low–treated) to test for differences in the degree of homogenization between more- versus less-socially
connected antibiotic-treated individuals and their respective controls (high–treated versus low–treated and low–treated versus
low–control). Counterintuitively, we found that more socially connected individuals that received antibiotic treatment had
more distinct microbiomes from their control counterparts when compared to less-connected individuals and their respective
controls (figure 3; electronic supplementary material, table S2). This dissimilarity was observed for three out of four measures
of microbiome composition: Bray–Curtis, Jaccard and unweighted UniFrac distance. Aligning with these compositional results,
our taxonomic analyses showed that high–treated individuals were more taxonomically distinct from their control counterparts
than low–treated individuals were from theirs (figure 4).

The compositional dissimilarity observed between high–control and high–treated individuals appeared to result in the
replacement of Firmicutes by Verrucomicrobiota in the treated group. Specifically, the enriched Verrucomicrobiota ASVs were
from the family Akkermansiaceae, which includes Akkermansia spp. that are found in the microbiomes of a wide range of
host taxa [46]. Interestingly, Akkermansia has been shown to bloom after antibiotic treatment in humans and other animals
[47], potentially explaining the enrichment of this taxon in high–treated individuals. However, similar enrichment was absent
in the low–treated group and this differential response suggests that social connectivity may be linked to the appearance of
Verrucomicrobiota post-antibiotic treatment. Given that Akkermansia is known to influence host metabolism [47] and social
behaviour can impact resource acquisition [48,49], it is plausible that there are metabolic consequences of the socially mediated
differences in microbiome composition we observed. Future research will be needed to understand whether there are functional
consequences of these socially mediated microbiome differences.

A surprising observation throughout our study was that social connectivity was only weakly associated with microbiome
responses in individuals that did not receive antibiotic treatment. For measures of both alpha diversity (observed richness
and Chao 1) and beta diversity (Jaccard and unweighted UniFrac), antibiotic perturbation magnified social effects on the
gazelle microbiome. One reason why antibiotic perturbation may have been key to revealing the role of social behaviour
is the environmental context of our study. Specifically, during our three-month study period, both rainfall and vegetation
greenness declined sharply at the study site [21]. Importantly, the changes in vegetation greenness were associated with
variation in microbiome diversity in gazelles [21], likely a reflection of rainfall-driven dietary changes [21,50,51]. Consequently,
this backdrop of strong environmentally mediated change in the microbiome could have muted socially mediated effects.
In support of this idea, Archie & Tung [7] recommended that perturbation experiments, which shift the microbiome from

Bacteroidota_Bacteroidia_UBA932

Bacteroidota_Bacteroidia_Bacteroidaceae
Bacteroidota_Bacteroidia_Porphyromonadaceae

Bacteroidota_Bacteroidia_Paludibacteraceae

Bacteroidota_Bacteroidia_NA

Bacteroidota_Bacteroidia_Bacteroidaceae
Bacteroidota_Bacteroidia_Bacteroidaceae
Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_UBA932
Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae
Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Muribaculaceae

Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_Bacteroidaceae
Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_Bacteroidaceae

Bacteroidota_Bacteroidia_UBA932

Bacteroidota_Bacteroidia_UBA932Bacteroidota_Bacteroidia_UBA932

Bacteroidota_Bacteroidia_Paludibacteraceae

Firmicutes_Clostridia_Lachnospiraceae
Firmicutes_Clostridia_Oscillospiraceae

Firmicutes_Clostridia_CAG–508
Firmicutes_Clostridia_CAG–508

Firmicutes_Clostridia_CAG–382

Firmicutes_Clostridia_CAG–74

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae
Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Lachnospiraceae

Firmicutes_Clostridia_Ruminococcaceae

Firmicutes_Clostridia_Ruminococcaceae

Firmicutes_Clostridia_CAG–74

Firmicutes_Clostridia_Ruminococcaceae
Firmicutes_Clostridia_Ruminococcaceae

Firmicutes_Clostridia_Ruminococcaceae
Firmicutes_Clostridia_Acutalibacteraceae
Firmicutes_Clostridia_Acutalibacteraceae
Firmicutes_Clostridia_Acutalibacteraceae

Firmicutes_Clostridia_NA
Firmicutes_Clostridia_WQUN01

Firmicutes_Clostridia_Anaerotignaceae

Firmicutes_Clostridia_Anaerotignaceae

Firmicutes_D_Bacilli_Staphylococcaceae

Firmicutes_Clostridia_CAG–74

Verrucomicrobiota_Verrucomicrobiae_Akkermansiaceae

Verrucomicrobiota_Verrucomicrobiae_Akkermansiaceae

2.25
1.83
1.83
1.83
1.68
1.63
1.61
1.60

1.50
1.49
1.47
1.46
1.46
1.46
1.44

–2.04
–2.10
–2.12
–2.12
–2.18
–2.27
–2.38
–2.40
–3.03
–3.43
–3.50
–3.53
–3.79
–4.27
–4.51

2.17
2.07
1.97
1.95
1.94
1.91
1.89
1.86

1.85
1.85
1.83
1.83
1.82
1.77
1.74

–2.47
–2.59
–2.75
–2.76
–2.79
–2.81
–2.81
–3.07
–3.39
–3.42
–3.61
–3.82
–3.95
–4.04
–4.26

W
il

co
x
o
n

 r
an

k
 s

u
m

 t
es

t 
p

 <
 0

.0
0
0
1

W
il

co
x
o
n
 r

an
k
 s

u
m

 t
es

t 
p

 <
 0

.0
0
0
1

Low–Control x Low–Treated High–Control x High–Treated

(a) (b)

Enriched in Controls (+) Enriched in Treateds (–)

Figure 4. Differential abundance of ASVs in low versus high social connectivity categories in response to antibiotic treatment. (a) The top 15 ASVs for the
low-connectivity category and (b) the top 15 ASVs for the high-connectivity category. For each comparison, positive values indicate ASVs enriched in control individuals
(blue) and negative values indicate enrichment in the treated individuals (orange). Rows are labelled with the phylum, class and family of the respective ASV
and associated numbers are log-fold differences. P-values from Wilcoxon tests quantifying the difference in log-fold change between treatment-enriched ASVs and
control-enriched ASVs are shown for each comparison. A list of all differentially abundant ASVs is presented for lows in electronic supplementary material, table S3 and
for highs in electronic supplementary material, table S4.

9

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241756

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 F

eb
ru

ar
y 

20
25

 



its equilibrium state, are necessary to reveal differences owing to social interactions. Yet, to date, most wild animal social
behaviour–microbiome studies have been done under conditions where the microbiome is in an ‘equilibrium’ or non-perturbed
state [2–6], which could mask the type of counterintuitive patterns we describe here. More generally, given that environmental
dynamism is a common feature of studying natural populations, our results reinforce the value of using a perturbation
approach to understand social behaviour–microbiome interactions in the wild.

Overall, our study reveals new insight into the complexities of how social behaviour influences microbiome composition.
It has been suggested that antibiotic treatment experiments are necessary to fully understand how social contact shapes the
microbiome [7]. Our study provides strong support for this suggestion. Under antibiotic treatment conditions, we found that
high levels of social connectivity facilitated the rapid acquisition of microbes after disruption, but this resulted in greater
microbiome divergence from the population background (i.e. control) microbiome. The microbiome dissimilarity observed
between treated and control individuals with high connectivity may reflect a change in host–microbiome function in more
socially connected individuals. Longer- term experiments are required to quantify whether the divergent microbiomes observed
in more social individuals have negative or positive consequences for the host. Such experiments could be aided by recent
advances in wildlife tracking technologies (e.g. lightweight proximity and GPS tags [52,53]) that would facilitate the generation
of higher resolution social networks. Regardless, our finding that social connectivity can increase microbiome dissimilarity,
rather than similarity, in the context of a perturbation event raises new questions about the costs and benefits of social
interactions.
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